skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Six new transformation pathways connecting simple crystal structures and common intermetallic crystal structures
Award ID(s):
1934641
PAR ID:
10387503
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Acta Materialia
Volume:
221
Issue:
C
ISSN:
1359-6454
Page Range / eLocation ID:
117429
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. Abstract Antiferroelectric (AFE) materials are of great interest owing to their scientific richness and their utility in high‐energy density capacitors. Here, the history of AFEs is reviewed, and the characteristics of antiferroelectricity and the phase transition of an AFE material are described. AFEs are energetically close to ferroelectric (FE) phases, and thus both the electric field strength and applied stress (pressure) influence the nature of the transition. With the comparable energetics between the AFE and FE phases, there can be a competition and frustration of these phases, and either incommensurate and/or a glassy (relaxor) structures may be observed. The phase transition in AFEs can also be influenced by the crystal/grain size, particularly at nanometric dimensions, and may be tuned through the formation of solid solutions. There have been extensive studies on the perovskite family of AFE materials, but many other crystal structures host AFE behavior, such as CuBiP2Se6. AFE applications include DC‐link capacitors for power electronics, defibrillator capacitors, pulse power devices, and electromechanical actuators. The paper concludes with a perspective on the future needs and opportunities with respect to discovery, science, and applications of AFE. 
    more » « less