Microbial communities host many auxotrophs—organisms unable to synthesize one or more metabolites required for their growth. Auxotrophy is thought to confer an evolutionary advantage, yet auxotrophs must rely on other organisms that produce the metabolites they require. The mechanisms of metabolite provisioning by “producers” remain unknown. In particular, it is unclear how metabolites such as amino acids and cofactors, which are found inside the cell, are released by producers to become available to auxotrophs. Here, we explore metabolite secretion and cell lysis as two distinct possible mechanisms that result in the release of intracellular metabolites from producer cells. We measured the extent to which secretion or lysis of Escherichia coli and Bacteroides thetaiotaomicron amino acid producers can support the growth of engineered Escherichia coli amino acid auxotrophs. We found that cell-free supernatants and mechanically lysed cells provide minimal levels of amino acids to auxotrophs. In contrast, bacteriophage lysates of the same producer bacteria can support as many as 47 auxotroph cells per lysed producer cell. Each phage lysate released distinct levels of different amino acids, suggesting that in a microbial community the collective lysis of many different hosts by multiple phages could contribute to the availability of an array of intracellular metabolites for use by auxotrophs. Based on these results, we speculate that viral lysis could be a dominant mechanism of provisioning of intracellular metabolites that shapes microbial community structure.
Metabolites, or the small organic molecules that are synthesized by cells during metabolism, comprise a complex and dynamic pool of carbon in the ocean. They are an essential currency in interactions at the population and community levels of biological organization. Characterizing metabolite distributions inside microbial cells and dissolved in seawater is essential to understanding the controls on their production and fate, as well as their roles in shaping marine microbial food webs. Here, we apply a targeted metabolomics method to quantify particulate and dissolved distributions of a suite of biologically relevant metabolites including vitamins, amino acids, nucleic acids, osmolytes, and intermediates in biosynthetic pathways along a latitudinal transect in the western Atlantic Ocean. We find that, in the upper 200 m of the water column, most particulate or intracellular metabolites positively covary with the most abundant microbial taxa. In contrast, dissolved metabolites exhibited greater variability with differences in distribution between ocean regions. Although fewer particulate metabolites were detected below 200 m, the particulate metabolites identified in the deep ocean may be linked to adaptive physiological strategies of deep‐sea microbes. Based on the identified metabolite distributions, we propose relationships between certain metabolites and microbial populations, and find that dissolved metabolite distributions are not directly related to their particulate abundances.
more » « less- NSF-PAR ID:
- 10387537
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography
- Volume:
- 68
- Issue:
- 2
- ISSN:
- 0024-3590
- Page Range / eLocation ID:
- p. 377-393
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Manganese (Mn) is an essential element for life. Although its concentration is at (sub)nanomolar levels throughout the ocean, it affects the oxygen concentration of the ocean because it is central to the photosynthetic formation of dioxygen, O2, in photosystem center II. Mn inputs into the ocean are from atmospheric transport of particles and their dissolution to form dissolved Mn, and from the flux of dissolved Mn from rivers, sediments and hydrothermal vents. The main removal mechanism is transport of particulate Mn from dust and organic matter to the sediments. The environmental chemistry of manganese centers on its +2, +3 and +4 oxidation states. Most recent data show that Mn(II) is dissolved, that Mn(IV) is particulate MnO2, and that Mn(III) can be particulate or dissolved when bound to organic complexes [denoted as Mn(III)-L]. Mn(II) is oxidized primarily by microbial processes whereas MnO2 is reduced by abiotic and biotic processes. Photochemical processing aids redox cycling in surface waters. In suboxic zones, which are defined as areas with dissolved O2 concentrations below 3 M, both oxidation and reduction processes can occur but usually at different depths. In suboxic zones, dissolved Mn is also released from organic matter during its decomposition and from MnO2 reduction.more » « less
-
Abstract Marine sinking particles transport carbon from the surface and bury it in deep‐sea sediments, where it can be sequestered on geologic time scales. The combination of the surface ocean food web that produces these particles and the particle‐associated microbial community that degrades them creates a complex set of variables that control organic matter cycling. We use targeted metabolomics to characterize a suite of small biomolecules, or metabolites, in sinking particles and compare their metabolite composition to that of the suspended particles in the euphotic zone from which they are likely derived. These samples were collected in the South Atlantic subtropical gyre, as well as in the equatorial Atlantic region and the Amazon River plume. The composition of targeted metabolites in the sinking particles was relatively similar throughout the transect, despite the distinct oceanic regions in which they were generated. Metabolites possibly derived from the degradation of nucleic acids and lipids, such as xanthine and glycine betaine, were an increased mole fraction of the targeted metabolites in the sinking particles relative to surface suspended particles, while algal‐derived metabolites like the osmolyte dimethylsulfoniopropionate were a smaller fraction of the observed metabolites on the sinking particles. These compositional changes are shaped both by the removal of metabolites associated with detritus delivered from the surface ocean and by production of metabolites by the sinking particle‐associated microbial communities. Furthermore, they provide a basis for examining the types and quantities of metabolites that may be delivered to the deep sea by sinking particles.
-
Abstract Seasonal cycles within the marginal ice zones in polar regions include large shifts in temperature and salinity that strongly influence microbial abundance and physiology. However, the combined effects of concurrent temperature and salinity change on microbial community structure and biochemical composition during transitions between seawater and sea ice are not well understood. Coastal marine communities along the western Antarctic Peninsula were sampled and surface seawater was incubated at combinations of temperature and salinity mimicking the formation (cold, salty) and melting (warm, fresh) of sea ice to evaluate how these factors may shape community composition and particulate metabolite pools during seasonal transitions. Bacterial and algal community structures were tightly coupled to each other and distinct across sea-ice, seawater, and sea-ice-meltwater field samples, with unique metabolite profiles in each habitat. During short-term (approximately 10-day) incubations of seawater microbial communities under different temperature and salinity conditions, community compositions changed minimally while metabolite pools shifted greatly, strongly accumulating compatible solutes like proline and glycine betaine under cold and salty conditions. Lower salinities reduced total metabolite concentrations in particulate matter, which may indicate a release of metabolites into the labile dissolved organic matter pool. Low salinity also increased acylcarnitine concentrations in particulate matter, suggesting a potential for fatty acid degradation and reduced nutritional value at the base of the food web during freshening. Our findings have consequences for food web dynamics, microbial interactions, and carbon cycling as polar regions undergo rapid climate change.
-
Claesen, Jan (Ed.)ABSTRACT Colorectal cancer (CRC) is the second leading cause of cancer mortality worldwide. The dysbiotic gut microbiota and its metabolite secretions play a significant role in CRC development and progression. In this study, we identified microbial and metabolic biomarkers applicable to CRC using a meta-analysis of metagenomic datasets from diverse geographical regions. We used LEfSe, random forest (RF), and co-occurrence network methods to identify microbial biomarkers. Geographic dataset-specific markers were identified and evaluated using area under the ROC curve (AUC) scores and random effect size. Co-occurrence networks analysis showed a reduction in the overall microbial associations and the presence of oral pathogenic microbial clusters in CRC networks. Analysis of predicted metabolites from CRC datasets showed the enrichment of amino acids, cadaverine, and creatine in CRC, which were positively correlated with CRC-associated microbes ( Peptostreptococcus stomatis , Gemella morbillorum , Bacteroides fragilis , Parvimonas spp., Fusobacterium nucleatum , Solobacterium moorei , and Clostridium symbiosum ), and negatively correlated with control-associated microbes. Conversely, butyrate, nicotinamide, choline, tryptophan, and 2-hydroxybutanoic acid showed positive correlations with control-associated microbes ( P < 0.05). Overall, our study identified a set of global CRC biomarkers that are reproducible across geographic regions. We also reported significant differential metabolites and microbe-metabolite interactions associated with CRC. This study provided significant insights for further investigations leading to the development of noninvasive CRC diagnostic tools and therapeutic interventions. IMPORTANCE Several studies showed associations between gut dysbiosis and CRC. Yet, the results are not conclusive due to cohort-specific associations that are influenced by genomic, dietary, and environmental stimuli and associated reproducibility issues with various analysis approaches. Emerging evidence suggests the role of microbial metabolites in modulating host inflammation and DNA damage in CRC. However, the experimental validations have been hindered by cost, resources, and cumbersome technical expertise required for metabolomic investigations. In this study, we performed a meta-analysis of CRC microbiota data from diverse geographical regions using multiple methods to achieve reproducible results. We used a computational approach to predict the metabolomic profiles using existing CRC metagenomic datasets. We identified a reliable set of CRC-specific biomarkers from this analysis, including microbial and metabolite markers. In addition, we revealed significant microbe-metabolite associations through correlation analysis and microbial gene families associated with dysregulated metabolic pathways in CRC, which are essential in understanding the vastly sporadic nature of CRC development and progression.more » « less