While hundreds of thousands of human whole genome sequences (WGS) have been collected in the effort to better understand genetic determinants of disease, these whole genome sequences have less frequently been used to study another major determinant of human health: the human virome. Using the unmapped reads from WGS of over 1000 families, we present insights into the human blood DNA virome, focusing particularly on human herpesvirus (HHV) 6A, 6B, and 7. In addition to extensively cataloguing the viruses detected in WGS of human whole blood and lymphoblastoid cell lines, we use the family structure of our dataset to show that household drives transmission of several viruses, and identify the Mendelian inheritance patterns characteristic of inherited chromsomally integrated human herpesvirus 6 (iciHHV-6). Consistent with prior studies, we find that 0.6% of our dataset’s population has iciHHV, and we locate candidate integration sequences for these cases. We document genetic diversity within exogenous and integrated HHV species and within integration sites of HHV-6. Finally, in the first observation of its kind, we present evidence that suggests widespread de novo HHV-6B integration and HHV-7 integration and reactivation in lymphoblastoid cell lines. These findings show that the unmapped read space of WGS is a promising source of data for virology research.
more » « less- NSF-PAR ID:
- 10387548
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Virology Journal
- Volume:
- 19
- Issue:
- 1
- ISSN:
- 1743-422X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Roux, Simon (Ed.)ABSTRACT Epstein-Barr virus (EBV) and human herpesvirus 6 (HHV-6) infections are widespread in human populations. Here, I describe single-cell RNA sequencing of two lymphoblastoid cell lines harboring both episomal EBV and inherited chromosomally integrated HHV-6. Rare instances of HHV-6 expression appear enriched with EBV reactivation.more » « less
-
Abstract The unmapped readspace of whole genome sequencing data tends to be large but is often ignored. We posit that it contains valuable signals of both human infection and contamination. Using unmapped and poorly aligned reads from whole genome sequences (WGS) of over 1000 families and nearly 5000 individuals, we present insights into common viral, bacterial, and computational contamination that plague whole genome sequencing studies. We present several notable results: (1) In addition to known contaminants such as Epstein-Barr virus and phiX, sequences from whole blood and lymphocyte cell lines contain many other contaminants, likely originating from storage, prep, and sequencing pipelines. (2) Sequencing plate and biological sample source of a sample strongly influence contamination profile. And, (3) Y-chromosome fragments not on the human reference genome commonly mismap to bacterial reference genomes. Both experiment-derived and computational contamination is prominent in next-generation sequencing data. Such contamination can compromise results from WGS as well as metagenomics studies, and standard protocols for identifying and removing contamination should be developed to ensure the fidelity of sequencing-based studies.
-
Within the family Herpesviridae , sub-family β-herpesvirinae , and genus Roseolovirus , there are only three human herpesviruses that have been described: HHV-6A, HHV-6B, and HHV-7. Initially, HHV-6A and HHV-6B were considered as two variants of the same virus (i.e., HHV6). Despite high overall genetic sequence identity (~90%), HHV-6A and HHV-6B are now recognized as two distinct viruses. Sequence divergence (e.g., >30%) in key coding regions and significant differences in physiological and biochemical profiles (e.g., use of different receptors for viral entry) underscore the conclusion that HHV-6A and HHV-6B are distinct viruses of the β-herpesvirinae . Despite these viruses being implicated as causative agents in several nervous system disorders (e.g., multiple sclerosis, epilepsy, and chronic fatigue syndrome), the mechanisms of action and relative contributions of each virus to neurological dysfunction are unclear. Unresolved questions regarding differences in cell tropism, receptor use and binding affinity (i.e., CD46 versus CD134), host neuro-immunological responses, and relative virulence between HHV-6A versus HHV-6B prevent a complete characterization. Although it has been shown that both HHV-6A and HHV-6B can infect glia (and, recently, cerebellar Purkinje cells), cell tropism of HHV-6A versus HHV-6B for different nerve cell types remains vague. In this study, we show that both viruses can infect different nerve cell types (i.e., glia versus neurons) and different neurotransmitter phenotypes derived from differentiated human neural stem cells. As demonstrated by immunofluorescence, HHV-6A and HHV-6B productively infect VGluT1-containing cells (i.e., glutamatergic neurons) and dopamine-containing cells (i.e., dopaminergic neurons). However, neither virus appears to infect GAD67-containing cells (i.e., GABAergic neurons). As determined by qPCR, expression of immunological factors (e.g., cytokines) in cells infected with HHV-6A versus HHV6-B also differs. These data along with morphometric and image analyses of infected differentiated neural stem cell cultures indicate that while HHV-6B may have greater opportunity for transmission, HHV-6A induces more severe cytopathic effects (e.g., syncytia) at the same post-infection end points. Cumulatively, results suggest that HHV-6A is more virulent than HHV-6B in susceptible cells, while neither virus productively infects GABAergic cells. Consistency between these in vitro data and in vivo experiments would provide new insights into potential mechanisms for HHV6-induced epileptogenesis.more » « less
-
Abstract Human herpes virus 6B (HHV‐6B) is a widespread virus that infects most people early in infancy and establishes a chronic life‐long infection with periodic reactivation. CD4 T cells have been implicated in control of HHV‐6B, but antigenic targets and functional characteristics of the CD4 T‐cell response are poorly understood. We identified 25 naturally processed MHC‐II peptides, derived from six different HHV‐6B proteins, and showed that they were recognized by CD4 T‐cell responses in HLA‐matched donors. The peptides were identified by mass spectrometry after elution from HLA‐DR molecules isolated from HHV‐6B‐infected T cells. The peptides showed strong binding to matched HLA alleles and elicited recall T‐cell responses in vitro. T‐cell lines expanded in vitro were used for functional characterization of the response. Responding cells were mainly CD3+CD4+, produced IFN‐γ, TNF‐α, and low levels of IL‐2, alone or in combination, highlighting the presence of polyfunctional T cells in the overall response. Many of the responding cells mobilized CD107a, stored granzyme B, and mediated specific killing of peptide‐pulsed target cells. These results highlight a potential role for polyfunctional cytotoxic CD4 T cells in the long‐term control of HHV‐6B infection.
-
Abstract Aims This study assesses the diversity and abundance of Human Herpesviruses (HHVs) in the influent of an urban wastewater treatment plant using shotgun sequencing, metagenomic analysis and qPCR.
Methods and Results Influent wastewater samples were collected from the three interceptors that serve the City of Detroit and Wayne, Macomb and Oakland counties between November 2017 to February 2018. The samples were subjected to a series of processes to concentrate viruses which were further sequenced and amplified using qPCR. All nine types of HHV were detected in wastewater. Human Herpesvirus 8 (HHV-8), known as Kaposi’s sarcoma herpesvirus, which is only prevalent in 5–10% of USA population, was found to be the most abundant followed by HHV-3 or Varicella-zoster virus.
Conclusions The high abundance of HHV-8 in the Detroit metropolitan area may be attributed to the HIV-AIDS outbreak that was ongoing in Detroit during the sampling period.
Significance and Impact of the Study The approach described in this paper can be used to establish a baseline of viruses secreted by the community as a whole. Sudden changes in the baseline would identify changes in community health and immunity.