skip to main content


Title: Web-based authentic inquiry experiences in large introductory classes consistently associated with significant learning gains for all students
Abstract Background

Continuous calls for reform in science education emphasize the need to provide science experiences in lower-division courses to improve the retention of STEM majors and to develop science literacy and STEM skills for all students. Open or authentic inquiry and undergraduate research are effective science experiences leading to multiple gains in student learning and development. Most inquiry-based learning activities, however, are implemented in laboratory classes and the majority of them are guided inquiries. Although course-based undergraduate research experiences have significantly expanded the reach of the traditional apprentice approach, it is still challenging to provide research experiences to nonmajors and in large introductory courses. We examined student learning through a web-based authentic inquiry project implemented in a high-enrollment introductory ecology course for over a decade.

Results

Results from 10 years of student self-assessment of learning showed that the authentic inquiry experiences were consistently associated with significant gains in self-perception of interest and understanding and skills of the scientific process for all students—both majors and nonmajors, both lower- and upper-division students, both women and men, and both URM and non-URM students. Student performance in evaluating the quality of an inquiry report, before and after the inquiry project, also showed significant learning gains for all students. The authentic inquiry experiences proved highly effective for lower-division students, nonmajors, and women and URM students, whose learning gains were similar to or greater than those of their counterparts. The authentic inquiry experiences were particularly helpful to students who were less prepared with regard to the ability to evaluate a scientific report and narrowed the performance gap.

Conclusions

These findings suggest that authentic inquiry experiences can serve as an effective approach for engaging students in high-enrollment, introductory science courses. They can facilitate development of science literacy and STEM skills of all students, skills that are critical to students’ personal and professional success and to informed engagement in civic life.

 
more » « less
NSF-PAR ID:
10387551
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
International Journal of STEM Education
Volume:
8
Issue:
1
ISSN:
2196-7822
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    While the traditional goals of undergraduate courses are often content-based, the development of career-readiness and professional skills, such as those listed by the National Association of Colleges and Employers, are increasingly recognized as important learning outcomes. As Mammalogy courses embrace more hands-on learning activities, they provide the opportunity to embed these professional skills, which are directly relevant to many careers in science. For example, many Mammalogy courses may include projects that incorporate experimental design and data analysis that focus on quantitative literacy, in addition to technical skills including small mammal trapping and handling, or preparing voucher specimens, that focus on problem-solving and attention to detail. Here, we review the professional skills that can be developed through a Mammalogy course and evaluate evidence-based approaches to build those skills into our courses. One approach, using Course-based Undergraduate Research Experiences (CUREs), provides opportunities for both student skill development and instructor research program development. Because they invite students to participate in authentic scientific inquiry—from study design and data collection, to analysis and reporting of results—students participating in CUREs reported significant gains in their comfort with several important professional skills, including conducting field procedures, formulating and analyzing data, normalizing failure, and attempting new procedures on their own. Finally, we review the literature to demonstrate how active learning approaches inherent in CUREs can help students to build familiarity with technologies and techniques for collecting and assessing data from wild mammal populations, as well as to build important professional skills such as teamwork, leadership, problem-solving, and written and oral communication.

     
    more » « less
  2. Access to lower-division engineering courses in the community college substantially influences whether or not community college students pursue and successfully achieve an engineering degree. With about 60% of students from under-represented minority (URM) groups beginning their post-secondary education in the community colleges, providing this access is critical if the US is to diversify and expand its engineering workforce. Still many community college lack the faculty, equipment, or local expertise to offer a comprehensive transfer engineering program, thus compromising participation in engineering courses for underrepresented groups as well as for students residing in rural and remote areas, where distance is a key barrier to post-secondary enrollment. An additional obstacle to participation is the need for so many community college students to work, many in inflexible positions that compromise their ability to attend traditional face-to-face courses. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of the engineering curriculum by developing resources and teaching strategies to enable small-to-medium community college engineering programs to support a comprehensive set of lower-division engineering courses that are delivered either completely online, or with limited face-to-face interactions. This paper focuses on the development and testing of the teaching and learning resources for Introduction to Engineering, a three-unit course (two units of lecture and one unit of lab). The course has special significance as a gateway course for students who without the role models that their middle class peers so often have readily available enter college with very limited awareness of the exciting projects and fulfilling careers the engineering profession offers as well as with apprehension about their ability to succeed in a demanding STEM curriculum. To this end, the course covers academic success skills in engineering including mindset and metacognition, academic pathways, career awareness and job functions in the engineering profession, team building and communications, the engineering design process, and a broad range of fundamental and engaging topics and projects in engineering including electronics, basic test equipment, programming in MATLAB and Arduino, robotics, bridge design, and materials science. The paper presents the results of a pilot implementation of the teaching materials in a regular face-to-face course which will be used to inform subsequent on-line delivery. Additionally, student surveys and interviews are used to assess students’ perceptions of the effectiveness of the course resources, along with their sense of self-efficacy and identity as aspiring engineers. 
    more » « less
  3. Course-based Undergraduate Research Experiences (CUREs) are an increasingly utilized model for exposing students to research. The lack of robust assessments is a major hurdle to wider adoption of CUREs. The Coronavirus Infectious Disease 2019 (COVID-19) pandemic necessitated a drastic shift of in-person courses to the online format. Using the Participant Perception Indicator (PPI) survey, we measured students’ self-reported changes in learning from such a biochemistry course at a large university in south Florida based on the Biochemistry Authentic Scientific Inquiry Lab (BASIL) model. By doing this, we were able to better understand the student-benefits of CUREs and how these benefits are affected by changes in learning modalities between two relevant semesters, i.e., winter and summer of 2020. Anticipated learning outcomes (ALOs) help partially fill the gap left by the loss of physical interaction in experimental procedures. Our analysis indicated that students learned more through bioinformatic experiments compared to their wet-lab counterparts. Using pre- and post- surveys, students reported that their experience and confidence gains lagged behind their knowledge gain of technique-based skills. Students are not as confident in their understanding of techniques when unable to perform those in the physical laboratory. Thus, despite extensive pursuit of the purpose and protocols of the experiments and techniques, neither their experience nor their confidence was on par with their knowledge. This study is one of the first examples demonstrating a quantitative student-learning assessment of a CURE in the science, technology, engineering, and mathematics (STEM) disciplines. The novel assessment strategies targeted to identify gaps in learning mastery could facilitate the adoption of CUREs, fostering opportunities for all undergraduate students to vital laboratory research experiences in STEM. 
    more » « less
  4. With computing impacting most every professional field, it has become essential to provide pathways for students other than those majoring in computer science to acquire computing knowledge and skills. Virtually all employers and graduate and professional schools seek these skills in their employees or students, regardless of discipline. Academia currently leans towards approaches such as double majors or combined majors between computer science and other non-CS disciplines, commonly referred to as “CS+X” programs. These programs tend to require rigorous courses gleaned from the institutions’ courses for computer science majors. Thus, they may not meet the needs of majors in disciplines such as the social and biological sciences, humanities, and others. The University of Maryland, Baltimore County (UMBC) is taking an approach more suitably termed “X+CS” to fulfill the computing needs of non-CS majors. As part of a National Science Foundation (NSF) grant, we are developing a “computing” minor specifically to meet their needs. To date, we have piloted the first two of the minor’s approximately six courses. The first is a variation on the existing Computer Science I course required for majors but restricted to nonmajors. Both versions of the course use the Python language and cover the same programming content, but with the non-majors assigned projects with relevance to non-CS disciplines. We use the same student assessment measures of homework, projects, and examinations for both courses. After four semesters, results show that non-CS majors perform comparably to majors. Students also express increased interest in computing and satisfaction with being part of a non- CS major cohort. The second course was piloted in fall 2019. It is a new course intended to enhance and hone programming skills and introduce topics such as web scraping, HTML and CSS, web application development, data formats, and database use. Students again express increased interest in computing and were already beginning to apply the computing skills that they were learning to their non-CS courses. As a welcome side effect, we experienced a significant increase in the number of women and under-represented minorities (URMs) in these two courses when compared with CS-major specific courses. Overall, women comprised 52% of the population, with URMs following a similar upward trend. We are currently developing the third course in the computing minor and exploring options for the remaining three. Possibilities include electives from our Information Systems major. We will also be working with our science, social science, and humanities departments to utilize existing courses in those disciplines that apply computing. The student response that we have received thus far provides us with evidence that our computing minor will be popular among UMBC’s non-CS population, providing them with a more suitable and positive computing education than existing CS+X efforts. 
    more » « less
  5. null (Ed.)
    Bridge courses are often created to provide participants with remediation instruction on discipline-specific content knowledge, like chemistry and mathematics, before enrollment in regular (semester-long) courses. The bridge courses are then designed to impact student’s academic success in the short-term. Also, as a consequence of the bridge course experience, it is often expected that students’ dropout rates on those regular courses will decrease. However, the bridge courses are often short (ten or fewer days) and packed with content, thus creating challenges for helping students sustain their learning gains over time. With the support of the NSF funded (DUE - Division Of Undergraduate Education) STEM Center at Sam Houston State University, we are designing a course for entering chemistry students that consists of a one-week pre-semester intensive bridge component, which then flows into a one-month co-curricular support component at the beginning of the semester. The primary goals of the bridge component of the course are to strengthen student academic preparedness, calibrated-self-efficacy, and to foster networking leading to a strong learning community. The goal of the co-curricular extension is to help students sustain and build upon the learning gains of the initial bridge component. We plan to extend the co-curricular portion of the course in future years. A key measure of success will be improved participant course grades in the introductory chemistry courses for majors. Our design process has been centered on weekly meetings that alternate between literature review and course design. The design process was initiated with backward design principles and continues with ongoing revision. The goals, design strategy, and design process of this new course will be presented along with the achieved student outcomes during the implementation of the past summer 2020. 
    more » « less