skip to main content

Title: The Cosmic Hunt for members in the outskirts of ultra-faint dwarf galaxies: Ursa Major I, Coma Berenices, and Boötes I

Gaia EDR3 data were used to identify potential members in the outskirts of three ultra-faint dwarf (UFD) galaxies: Coma Berenices (>2Rh), Ursa Major I (∼4Rh), and Boötes I (∼4Rh), as well as a new member in the central region of Ursa Major I. These targets were observed with the Gemini GRACES spectrograph, which was used to determine precision radial velocities and metallicities that confirm their associations with the UFD galaxies. The spectra were also used to measure absorption lines for 10 elements (Na, Mg, K, Ca, Sc, Ti, Cr, Fe, Ni, and Ba), which confirm that the chemical abundances of the outermost stars are in good agreement with stars in the central regions. The abundance ratios and chemical patterns of the stars in Coma Berenices are consistent with contributions from SN Ia, which is unusual for its star formation history and in conflict with previous suggestions that this system evolved chemically from a single core collapse supernova event. The chemistries for all three galaxies are consistent with the outermost stars forming in the central regions, then moving to their current locations through tidal stripping and/or supernova feedback. In Boötes I, however, the lower metallicity and lack of strong carbon enrichment of its outermost stars could also be evidence of a dwarf galaxy merger.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Medium: X Size: p. 1349-1365
["p. 1349-1365"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a detailed chemical abundance analysis of the brightest star in the ultrafaint dwarf (UFD) galaxy candidate Cetus II from high-resolution Magellan/MIKE spectra. For this star, DES J011740.53-173053, abundances or upper limits of 18 elements from carbon to europium are derived. Its chemical abundances generally follow those of other UFD galaxy stars, with a slight enhancement of theα-elements (Mg, Si, and Ca) and low neutron-capture element (Sr, Ba, and Eu) abundances supporting the classification of Cetus II as a likely UFD. The star exhibits lower Sc, Ti, and V abundances than Milky Way (MW) halo stars with similar metallicity. This signature is consistent with yields from a supernova originating from a star with a mass of ∼11.2M. In addition, the star has a potassium abundance of [K/Fe] = 0.81, which is somewhat higher than the K abundances of MW halo stars with similar metallicity, a signature that is also present in a number of UFD galaxies. A comparison including globular clusters and stellar stream stars suggests that high K is a specific characteristic of some UFD galaxy stars and can thus be used to help classify objects as UFD galaxies.

    more » « less
  2. We present a large homogeneous set of stellar parameters and abundances across a broad range of metallicities, involving 13 classical dwarf spheroidal (dSph) and ultra-faint dSph (UFD) galaxies. In total this study includes 380 stars in Fornax, Sagittarius, Sculptor, Sextans, Carina, Ursa Minor, Draco, Reticulum II, Bootes I, Ursa Major II, Leo I, Segue I, and Triangulum II. This sample represents the largest, homogeneous, high-resolution study of dSph galaxies to date. With our homogeneously derived catalog, we are able to search for similar and deviating trends across different galaxies. We investigate the mass dependence of the individual systems on the production of α-elements, but also try to shed light on the long-standing puzzle of the dominant production site of r-process elements. We use data from the Keck observatory archive and the ESO reduced archive to reanalyze stars from these 13 dSph galaxies. We automatize the step of obtaining stellar parameters, but run a full spectrum synthesis to derive all abundances except for iron. The homogenized set of abundances yielded the unique possibility to derive a relation between the onset of type Ia supernovae and the stellar mass of the galaxy. Furthermore, we derived a formula to estimate the evolution of α-elements. Placing all abundances consistently on the same scale is crucial to answer questions about the chemical history of galaxies. By homogeneously analysing Ba and Eu in the 13 systems, we have traced the onset of the s-process and found it to increase with metallicity as a function of the galaxy's stellar mass. Moreover, the r-process material correlates with the α-elements indicating some co-production of these, which in turn would point towards rare core-collapse supernovae rather than binary neutron star mergers as host for the r-process at low [Fe/H] in the investigated dSph systems. 
    more » « less

    We use Gaia EDR3 data to identify stars associated with six classical dwarf spheroidals (dSphs) (Draco, Ursa Minor, Sextans, Sculptor, Fornax, Carina) at their outermost radii, beyond their nominal King stellar limiting radius. For all of the dSphs examined, we find radial velocity matches with stars residing beyond the King limiting radius and with ${\gt}50{{\ \rm per\ cent}}$ astrometric probability (four in Draco, two in Ursa Minor, eight in Sextans, two in Sculptor, 12 in Fornax, and five in Carina), indicating that these stars are associated with their respective dSphs at high probability. We compare the positions of our candidate ‘extra-tidal’ stars with the orbital tracks of the galaxies, and identify stars, both with and without radial velocity matches, that are consistent with lying along the orbital track of the satellites. However, given the small number of candidate stars, we cannot make any conclusive statements about the significance of these spatially correlated stars. Cross matching with publicly available catalogues of RR Lyrae, we find one RR Lyrae candidate with ${\gt}50{{\ \rm per\ cent}}$ astrometric probability outside the limiting radius in each of Sculptor and Fornax, two such candidates in Draco, nine in Ursa Minor, seven in Sextans, and zero in Carina. Follow-up spectra on all of our candidates, including possible metallicity information, will help confirm association with their respective dSphs, and could represent evidence for extended stellar haloes or tidal debris around these classical dSphs.

    more » « less
  4. Abstract

    We present a chemodynamical study of the Grus I ultra-faint dwarf galaxy (UFD) from medium-resolution (R∼ 11,000) Magellan/IMACS spectra of its individual member stars. We identify eight confirmed members of Grus I, based on their low metallicities and coherent radial velocities, and four candidate members for which only velocities are derived. In contrast to previous work, we find that Grus I has a very low mean metallicity of 〈[Fe/H]〉 = −2.62 ± 0.11 dex, making it one of the most metal-poor UFDs. Grus I has a systemic radial velocity of −143.5 ± 1.2 km s−1and a velocity dispersion ofσrv=2.50.8+1.3km s−1, which results in a dynamical mass ofM1/2(rh)=84+12×105Mand a mass-to-light ratio ofM/LV=440250+650M/L. Under the assumption of dynamical equilibrium, our analysis confirms that Grus I is a dark-matter-dominated UFD (M/L> 80M/L). However, we do not resolve a metallicity dispersion (σ[Fe/H]< 0.44 dex). Our results indicate that Grus I is a fairly typical UFD with parameters that agree with mass–metallicity and metallicity-luminosity trends for faint galaxies. This agreement suggests that Grus I has not lost an especially significant amount of mass from tidal encounters with the Milky Way, in line with its orbital parameters. Intriguingly, Grus I has among the lowest central densities (ρ1/23.52.1+5.7×107Mkpc−3) of the UFDs that are not known to be tidally disrupting. Models of the formation and evolution of UFDs will need to explain the diversity of these central densities, in addition to any diversity in the outer regions of these relic galaxies.

    more » « less
  5. Abstract We report the detection of three RR Lyrae (RRL) stars (two RRc and one RRab) in the ultra-faint dwarf (UFD) galaxy Centaurus I (Cen I) and two Milky Way (MW) δ Scuti/SX Phoenicis stars based on multi-epoch giz DECam observations. The two RRc stars are located within two times the half-light radius ( r h ) of Cen I, while the RRab star (CenI-V3) is at ∼6 r h . The presence of three distant RRL stars clustered this tightly in space represents a 4.7 σ excess relative to the smooth distribution of RRL in the Galactic halo. Using the newly detected RRL stars, we obtain a distance modulus to Cen I of μ 0 = 20.354 ± 0.002 mag ( σ = 0.03 mag), a heliocentric distance of D ⊙ = 117.7 ± 0.1 kpc ( σ = 1.6 kpc), with systematic errors of 0.07 mag and 4 kpc. The location of the Cen I RRL stars in the Bailey diagram is in agreement with other UFD galaxies (mainly Oosterhoff II). Finally, we study the relative rate of RRc+RRd (RRcd) stars ( f cd ) in UFD and classical dwarf galaxies. The full sample of MW dwarf galaxies gives a mean of f cd = 0.28. While several UFD galaxies, such as Cen I, present higher RRcd ratios, if we combine the RRL populations of all UFD galaxies, the RRcd ratio is similar to the one obtained for the classical dwarfs ( f cd ∼ 0.3). Therefore, there is no evidence for a different fraction of RRcd stars in UFD and classical dwarf galaxies. 
    more » « less