skip to main content

Title: Vein‐to‐blade ratio is an allometric indicator of leaf size and plasticity

As a leaf expands, its shape dynamically changes. Previously, we documented an allometric relationship between vein and blade area in grapevine leaves. Larger leaves have a smaller ratio of primary and secondary vein area relative to blade area compared to smaller leaves. We sought to use allometry as an indicator of leaf size and plasticity.


We measured the ratio of vein‐to‐blade area from the same 208 vines across four growing seasons (2013, 2015, 2016, and 2017). Matching leaves by vine and node, we analyzed the correlation between the size and shape of grapevine leaves as repeated measures with climate variables across years.


The proportion of leaf area occupied by vein and blade exponentially decreased and increased, respectively, during leaf expansion making their ratio a stronger indicator of leaf size than area itself. Total precipitation and leaf wetness hours of the previous year but not the current showed strong negative correlations with vein‐to‐blade ratio, whereas maximum air temperature from the previous year was positively correlated.


Our results demonstrate that vein‐to‐blade ratio is a strong allometric indicator of leaf size and plasticity in grapevines measured across years. Grapevine leaf primordia are initiated in buds the year before they emerge, and we found more » that total precipitation and maximum air temperature of the previous growing season exerted the largest statistically significant effects on leaf morphology. Vein‐to‐blade ratio is a promising allometric indicator of relationships between leaf morphology and climate, the robustness of which should be explored further.

« less
 ;  ;  ;  ;  ;  
Publication Date:
Journal Name:
American Journal of Botany
Page Range or eLocation-ID:
p. 571-579
Wiley Blackwell (John Wiley & Sons)
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background and Aims

    An individual plant consists of different-sized shoots, each of which consists of different-sized leaves. To predict plant-level physiological responses from the responses of individual leaves, modelling this within-shoot leaf size variation is necessary. Within-plant leaf trait variation has been well investigated in canopy photosynthesis models but less so in plant allometry. Therefore, integration of these two different approaches is needed.


    We focused on an established leaf-level relationship that the area of an individual leaf lamina is proportional to the product of its length and width. The geometric interpretation of this equation is that different-sized leaf laminas from a single species share the same basic form. Based on this shared basic form, we synthesized a new length-times-width equation predicting total shoot leaf area from the collective dimensions of leaves that comprise a shoot. Furthermore, we showed that several previously established empirical relationships, including the allometric relationships between total shoot leaf area, maximum individual leaf length within the shoot and total leaf number of the shoot, can be unified under the same geometric argument. We tested the model predictions using five species, all of which have simple leaves, selected from diverse taxa (Magnoliids, monocots and eudicots) and from differentmore »growth forms (trees, erect herbs and rosette herbs).

    Key Results

    For all five species, the length-times-width equation explained within-species variation of total leaf area of a shoot with high accuracy (R2 > 0.994). These strong relationships existed despite leaf dimensions scaling very differently between species. We also found good support for all derived predictions from the model (R2 > 0.85).


    Our model can be incorporated to improve previous models of allometry that do not consider within-shoot size variation of individual leaves, providing a cross-scale linkage between individual leaf-size variation and shoot-size variation.

    « less
  2. Premise

    Leaf morphology is dynamic, continuously deforming during leaf expansion and among leaves within a shoot. Here, we measured the leaf morphology of more than 200 grapevines (Vitisspp.) over four years and modeled changes in leaf shape along the shoot to determine whether a composite leaf shape comprising all the leaves from a single shoot can better capture the variation and predict species identity compared with individual leaves.


    Using homologous universal landmarks found in grapevine leaves, we modeled various morphological features as polynomial functions of leaf nodes. The resulting functions were used to reconstruct modeled leaf shapes across the shoots, generating composite leaves that comprehensively capture the spectrum of leaf morphologies present.


    We found that composite leaves are better predictors of species identity than individual leaves from the same plant. We were able to use composite leaves to predict the species identity of previously unassigned grapevines, which were verified with genotyping.


    Observations of individual leaf shape fail to capture the true diversity between species. Composite leaf shape—an assemblage of modeled leaf snapshots across the shoot—is a better representation of the dynamic and essential shapes of leaves, in addition to serving as a better predictor of species identity than individual leaves.

  3. Abstract Background

    Grafting is a horticultural practice used widely across woody perennial crop species to fuse together the root and shoot system of two distinct genotypes, the rootstock and the scion, combining beneficial traits from both. In grapevine, grafting is used in nearly 80% of all commercial vines to optimize fruit quality, regulate vine vigor, and enhance biotic and abiotic stress-tolerance. Rootstocks have been shown to modulate elemental composition, metabolomic profiles, and the shape of leaves in the scion, among other traits. However, it is currently unclear how rootstock genotypes influence shoot system gene expression as previous work has reported complex and often contradictory findings.


    In the present study, we examine the influence of grafting on scion gene expression in leaves and reproductive tissues of grapevines growing under field conditions for three years. We show that the influence from the rootstock genotype is highly tissue and time dependent, manifesting only in leaves, primarily during a single year of our three-year study. Further, the degree of rootstock influence on scion gene expression is driven by interactions with the local environment.


    Our results demonstrate that the role of rootstock genotype in modulating scion gene expression is not a consistent, unchanging effect, but rathermore »an effect that varies over time in relation to local environmental conditions.

    « less
  4. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  5. Arabidopsis thaliana ecotypes adapted to native habitats with different daylengths, temperatures, and precipitation were grown experimentally under seven combinations of light intensity and leaf temperature to assess their acclimatory phenotypic plasticity in foliar structure and function. There were no differences among ecotypes when plants developed under moderate conditions of 400 µmol photons m−2 s−1 and 25 °C. However, in response to more extreme light or temperature regimes, ecotypes that evolved in habitats with pronounced differences in either the magnitude of changes in daylength or temperature or in precipitation level exhibited pronounced adjustments in photosynthesis and transpiration, as well as anatomical traits supporting these functions. Specifically, when grown under extremes of light intensity (100 versus 1000 µmol photons m−2 s−1) or temperature (8 °C versus 35 °C), ecotypes from sites with the greatest range of daylengths and temperature over the growing season exhibited the greatest differences in functional and structural features related to photosynthesis (light- and CO2-saturated capacity of oxygen evolution, leaf dry mass per area or thickness, phloem cells per minor vein, and water-use efficiency of CO2 uptake). On the other hand, the ecotype from the habitat with the lowest precipitation showed the greatest plasticity in features related to watermore »transport and loss (vein density, ratio of water to sugar conduits in foliar minor veins, and transpiration rate). Despite these differences, common structure–function relationships existed across all ecotypes and growth conditions, with significant positive, linear correlations (i) between photosynthetic capacity (ranging from 10 to 110 µmol O2 m−2 s−1) and leaf dry mass per area (from 10 to 75 g m−2), leaf thickness (from 170 to 500 µm), and carbohydrate-export infrastructure (from 6 to 14 sieve elements per minor vein, from 2.5 to 8 µm2 cross-sectional area per sieve element, and from 16 to 82 µm2 cross-sectional area of sieve elements per minor vein); (ii) between transpiration rate (from 1 to 17 mmol H2O m−2 s−1) and water-transport infrastructure (from 3.5 to 8 tracheary elements per minor vein, from 13.5 to 28 µm2 cross-sectional area per tracheary element, and from 55 to 200 µm2 cross-sectional area of tracheary elements per minor vein); (iii) between the ratio of transpirational water loss to CO2 fixation (from 0.2 to 0.7 mol H2O to mmol−1 CO2) and the ratio of water to sugar conduits in minor veins (from 0.4 to 1.1 tracheary to sieve elements, from 4 to 6 µm2 cross-sectional area of tracheary to sieve elements, and from 2 to 6 µm2 cross-sectional area of tracheary elements to sieve elements per minor vein); (iv) between sugar conduits and sugar-loading cells; and (v) between water conducting and sugar conducting cells. Additionally, the proportion of water conduits to sugar conduits was greater for all ecotypes grown experimentally under warm-to-hot versus cold temperature. Thus, developmental acclimation to the growth environment included ecotype-dependent foliar structural and functional adjustments resulting in multiple common structural and functional relationships.« less