skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Critical roles for ‘housekeeping’ nucleases in type III CRISPR-Cas immunity
CRISPR-Cas systems are a family of adaptive immune systems that use small CRISPR RNAs (crRNAs) and CRISPR-associated (Cas) nucleases to protect prokaryotes from invading plasmids and viruses (i.e., phages). Type III systems launch a multilayered immune response that relies upon both Cas and non-Cas cellular nucleases, and although the functions of Cas components have been well described, the identities and roles of non-Cas participants remain poorly understood. Previously, we showed that the type III-A CRISPR-Cas system in Staphylococcus epidermidis employs two degradosome-associated nucleases, PNPase and RNase J2, to promote crRNA maturation and eliminate invading nucleic acids (Chou-Zheng and Hatoum-Aslan, 2019). Here, we identify RNase R as a third ‘housekeeping’ nuclease critical for immunity. We show that RNase R works in concert with PNPase to complete crRNA maturation and identify specific interactions with Csm5, a member of the type III effector complex, which facilitate nuclease recruitment/stimulation. Furthermore, we demonstrate that RNase R and PNPase are required to maintain robust anti-plasmid immunity, particularly when targeted transcripts are sparse. Altogether, our findings expand the known repertoire of accessory nucleases required for type III immunity and highlight the remarkable capacity of these systems to interface with diverse cellular pathways to ensure successful defense.  more » « less
Award ID(s):
2054755
PAR ID:
10387631
Author(s) / Creator(s):
;
Date Published:
Journal Name:
eLife
Volume:
11
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Just as humans are susceptible to viruses, bacteria have their own viruses to contend with. These viruses – known as phages – attach to the surface of bacterial cells, inject their genetic material, and use the cells’ enzymes to multiply while destroying their hosts. To defend against a phage attack, bacteria have evolved a variety of immune systems. For example, when a bacterium with an immune system known as CRISPR-Cas encounters a phage, the system creates a ‘memory’ of the invader by capturing a small snippet of the phage’s genetic material. The pieces of phage DNA are copied into small molecules known as CRISPR RNAs, which then combine with one or more Cas proteins to form a group called a Cas complex. This complex patrols the inside of the cell, carrying the CRISPR RNA for comparison, similar to the way a detective uses a fingerprint to identify a criminal. Once a match is found, the Cas proteins chop up the invading genetic material and destroy the phage. There are several different types of CRISPR-Cas systems. Type III systems are among the most widespread in nature and are unique in that they provide a nearly impenetrable barrier to phages attempting to infect bacterial cells. Medical researchers are exploring the use of phages as alternatives to conventional antibiotics and so it is important to find ways to overcome these immune responses in bacteria. However, it remains unclear precisely how Type III CRISPR-Cas systems are able to mount such an effective defense. Chou-Zheng and Hatoum-Aslan used genetic and biochemical approaches to study the Type III CRISPR-Cas system in a bacterium called Staphylococcus epidermidis. The experiments showed that two enzymes called PNPase and RNase J2 played crucial roles in the defense response triggered by the system. PNPase helped to generate CRISPR RNAs and both enzymes were required to help to destroy genetic material from invading phages. Previous studies have shown that PNPase and RNase J2 are part of a machine in bacterial cells that usually degrades damaged genetic material. Therefore, these findings show that the Type III CRISPR-Cas system in S. epidermidis has evolved to coordinate with another pathway to help the bacteria survive attack from phages. CRISPR-Cas immune systems have formed the basis for a variety of technologies that continue to revolutionize genetics and biomedical research. Therefore, along with aiding the search for alternatives to antibiotics, this work may potentially inspire the development of new genetic technologies in the future. 
    more » « less
  2. null (Ed.)
    Prokaryotes and viruses have fought a long battle against each other. Prokaryotes use CRISPR–Cas-mediated adaptive immunity, while conversely, viruses evolve multiple anti-CRISPR (Acr) proteins to defeat these CRISPR–Cas systems. The type I-F CRISPR–Cas system in Pseudomonas aeruginosa requires the crRNA-guided surveillance complex (Csy complex) to recognize the invading DNA. Although some Acr proteins against the Csy complex have been reported, other relevant Acr proteins still need studies to understand their mechanisms. Here, we obtain three structures of previously unresolved Acr proteins (AcrF9, AcrF8, and AcrF6) bound to the Csy complex using electron cryo-microscopy (cryo-EM), with resolution at 2.57 Å, 3.42 Å, and 3.15 Å, respectively. The 2.57-Å structure reveals fine details for each molecular component within the Csy complex as well as the direct and water-mediated interactions between proteins and CRISPR RNA (crRNA). Our structures also show unambiguously how these Acr proteins bind differently to the Csy complex. AcrF9 binds to key DNA-binding sites on the Csy spiral backbone. AcrF6 binds at the junction between Cas7.6f and Cas8f, which is critical for DNA duplex splitting. AcrF8 binds to a distinct position on the Csy spiral backbone and forms interactions with crRNA, which has not been seen in other Acr proteins against the Csy complex. Our structure-guided mutagenesis and biochemistry experiments further support the anti-CRISPR mechanisms of these Acr proteins. Our findings support the convergent consequence of inhibiting degradation of invading DNA by these Acr proteins, albeit with different modes of interactions with the type I-F CRISPR–Cas system. 
    more » « less
  3. Altamirano-Bustamante, Myriam M. (Ed.)
    Type III CRISPR-Cas systems employ multiprotein effector complexes bound to small CRISPR RNAs (crRNAs) to detect foreign RNA transcripts and elicit a complex immune response that leads to the destruction of invading RNA and DNA. Type III systems are among the most widespread in nature, and emerging interest in harnessing these systems for biotechnology applications highlights the need for detailed structural analyses of representatives from diverse organisms. We performed cryo-EM reconstructions of the Type III-A Cas10-Csm effector complex fromS.epidermidisbound to an intact, cognate target RNA and identified two oligomeric states, a 276 kDa complex and a 318 kDa complex. 3.1 Å density for the well-ordered 276 kDa complex allowed construction of atomic models for the Csm2, Csm3, Csm4 and Csm5 subunits within the complex along with the crRNA and target RNA. We also collected small-angle X-ray scattering data which was consistent with the 276 kDa Cas10-Csm architecture we identified. Detailed comparisons between theS.epidermidisCas10-Csm structure and the well-resolved bacterial(S.thermophilus) and archaeal (T.onnurineus) Cas10-Csm structures reveal differences in how the complexes interact with target RNA and crRNA which are likely to have functional ramifications. These structural comparisons shed light on the unique features of Type III-A systems from diverse organisms and will assist in improving biotechnologies derived from Type III-A effector complexes. 
    more » « less
  4. Transposon-encoded tnpB and iscB genes encode RNA-guided DNA nucleases that promote their own selfish spread through targeted DNA cleavage and homologous recombination1–4. These widespread gene families were repeatedly domesticated over evolutionary timescales, leading to the emergence of diverse CRISPR-associated nucleases including Cas9 and Cas12 (refs. 5,6). We set out to test the hypothesis that TnpB nucleases may have also been repurposed for novel, unexpected functions other than CRISPR–Cas adaptive immunity. Here, using phylogenetics, structural predictions, comparative genomics and functional assays, we uncover multiple independent genesis events of programmable transcription factors, which we name TnpB-like nuclease-dead repressors (TldRs). These proteins use naturally occurring guide RNAs to specifically target conserved promoter regions of the genome, leading to potent gene repression in a mechanism akin to CRISPR interference technologies invented by humans7. Focusing on a TldR clade found broadly in Enterobacteriaceae, we discover that bacteriophages exploit the combined action of TldR and an adjacently encoded phage gene to alter the expression and composition of the host flagellar assembly, a transformation with the potential to impact motility8, phage susceptibility9, and host immunity10. Collectively, this work showcases the diverse molecular innovations that were enabled through repeated exaptation of transposon-encoded genes, and reveals the evolutionary trajectory of diverse RNA-guided transcription factors. RNA-guided transcription factors arose repeatedly via the domestication of transposon-encoded tnpB genes, representing a parallel evolutionary path to CRISPR-Cas adaptive immunity. 
    more » « less
  5. Abstract CRISPR–Cas adaptive immune systems capture DNA fragments from invading mobile genetic elements and integrate them into the host genome to provide a template for RNA-guided immunity1. CRISPR systems maintain genome integrity and avoid autoimmunity by distinguishing between self and non-self, a process for which the CRISPR/Cas1–Cas2 integrase is necessary but not sufficient2–5. In some microorganisms, the Cas4 endonuclease assists CRISPR adaptation6,7, but many CRISPR–Cas systems lack Cas48. Here we show here that an elegant alternative pathway in a type I-E system uses an internal DnaQ-like exonuclease (DEDDh) to select and process DNA for integration using the protospacer adjacent motif (PAM). The natural Cas1–Cas2/exonuclease fusion (trimmer-integrase) catalyses coordinated DNA capture, trimming and integration. Five cryo-electron microscopy structures of the CRISPR trimmer-integrase, visualized both before and during DNA integration, show how asymmetric processing generates size-defined, PAM-containing substrates. Before genome integration, the PAM sequence is released by Cas1 and cleaved by the exonuclease, marking inserted DNA as self and preventing aberrant CRISPR targeting of the host. Together, these data support a model in which CRISPR systems lacking Cas4 use fused or recruited9,10exonucleases for faithful acquisition of new CRISPR immune sequences. 
    more » « less