3-Hydroxyanthranilate 3,4-dioxygenase (HAO) is an iron-dependent protein that activates O2 and inserts both O atoms into 3- hydroxyanthranilate (3-HAA). An intriguing question is how HAO can rapidly bind O2, even though local O2 concentrations and diffusion rates are relatively low. Here, a close inspection of the HAO structures revealed that substrate- and inhibitor-bound structures exhibit a closed conformation with three hydrophobic loop regions moving toward the catalytic iron center, whereas the ligand-free structure is open. We hypothesized that these loop movements enhance O2 binding to the binary complex of HAO and to 3-HAA. We found that the carboxyl end of 3-HAA triggers the changes in two loop regions and that the third loop movement appears to be driven by an H-bond interaction between Asn-27 and Ile-142. Mutational analyses revealed that N27A, I142A, and I142P variants cannot form a closed conformation, and steady-state kinetic assays indicated that these variants have a substantially higher Km for O2 than wild-type HAO. This observation suggested enhanced hydrophobicity at the iron center resulting from the concerted loop movements after the binding of the primary substrate, which is hydrophilic. Given that O2 is nonpolar, the increased hydrophobicity at the Fe center of the complex appears to be essential for rapid O2 binding and activation, explaining the reason for the 3-HAA–induced loop movements. As substrate binding–induced open-to-closed conformational changes are common, the results reported here may help further our understanding of how oxygen is enriched in the nonheme Fe-dependent dioxygenases.
more »
« less
Charge Maintenance during Catalysis in Nonheme Iron Oxygenases
Here, the choice of the first coordination shell of the metal center is analyzed from the perspective of charge maintenance in a binary enzyme–substrate complex and an O2-bound ternary complex in the nonheme iron oxygenases. Comparing homogentisate 1,2-dioxygenase and gentisate dioxygenase highlights the significance of charge maintenance after substrate binding as an important factor that drives the reaction coordinate. We then extend the charge analysis to several common types of nonheme iron oxygenases containing either a 2-His-1-carboxylate facial triad or a 3-His or 4-His ligand motif, including extradiol and intradiol ring-cleavage dioxygenases, thiol dioxygenases, α-ketoglutarate-dependent oxygenases, and carotenoid cleavage oxygenases. After forming the productive enzyme–substrate complex, the overall charge of the iron complex at the 0, +1, or +2 state is maintained in the remaining catalytic steps. Hence, maintaining a constant charge is crucial to promote the reaction of the iron center beginning from the formation of the Michaelis or ternary complex. The charge compensation to the iron ion is tuned not only by protein-derived carboxylate ligands but also by substrates. Overall, these analyses indicate that charge maintenance at the iron center is significant when all the necessary components form a productive complex. This charge maintenance concept may apply to most oxygen-activating metalloenzymes systems that do not draw electrons and protons step-by-step from a separate reactant, such as NADH, via a reductase. The charge maintenance perception may also be useful in proposing catalytic pathways or designing prototypical reactions using artificial or engineered enzymes for biotechnological applications.
more »
« less
- Award ID(s):
- 2204225
- PAR ID:
- 10387657
- Editor(s):
- Pimchai Chaiyen
- Date Published:
- Journal Name:
- ACS Catalysis
- Volume:
- 12
- Issue:
- 10
- ISSN:
- 2155-5435
- Page Range / eLocation ID:
- 6191 to 6208
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
PnpC1C2 is an enzyme from the soil bacterium Pseudomonas putida DLL-E4 that is in the pathway for the oxidative catabolism of 4-nitrophenol. PnpC1C2 oxidatively cleaves hydroquinone into -hydroxymuconic semialdehyde. It belongs to the type II hydroquinone dioxygenase family, a relatively uncharacterized group of mononuclear nonheme Fe(II)-dependent enzymes that catalyze oxidative ring-cleavage reactions, which includes the well-studied catechol extradiol dioxygenases as well as the structurally unrelated 2,6-dichlorohydro-quinone dioxygenase (PcpA). Steady-state kinetics studies using UV/Vis spectroscopy were performed to characterize the enzyme specificity towards various substituted hydroquinones. In addition to its native substrate, PnpC1C2 was active towards a variety of monosubstituted hydroquinones. Methyl- and methoxyhydroquinone showed a moderately higher , and chloro- and bromohydroquinone showed a moderately lower , but all had a within an order of magnitude of unsubstituted hydroquinone. Likewise, only small differences in the rates of mechanism-based inactivation were observed among these substrates. Among disubstituted hydroquinones, only 2,6- and 2,5-dimethylhydroquinone showed any activity, with the latter only barely detectable. A variety of para-substituted phenols were found to be good inhibitors of PnpC1C2. NMR studies were performed to determine the regioselectivity of ring-cleavage with monosubstituted hydroquinones. All monosubstituted hydroquinones tested (methyl-, chloro-, bromo-, and methoxyhydroquinone) yielded exclusively the 1,6-cleavage product. Thus, PnpC1C2 shows notable differences in both its substrate specificity and the ring-cleavage regioselectivity compared to that of PcpA. These results provide an important basis for future comparison of structure-function correlations among the hydroquinone ring-cleaving dioxygenases.more » « less
-
Cysteamine dioxygenase (ADO) has been reported to exhibit two distinct biological functions with a non-heme iron center. It catalyzes oxidation of both cysteamine in sulfur metabolism and N-terminal cysteine-containing proteins or peptides, such as regulator of G protein signaling 5 (RGS5). It thereby preserves oxygen homeostasis in a variety of physiological processes. However, little is known about its catalytic center and how it interacts with these two types of primary substrates in addition to O2. Here, using EPR, Mössbauer, and UV-Vis spectroscopies, we explored the binding mode of cysteamine and RGS5 to human and mouse ADO proteins in their physiologically relevant ferrous form. This characterization revealed that in the presence of nitric oxide as a spin probe and oxygen surrogate, both the small molecule and the peptide substrates coordinate to the iron center with their free thiols in a monodentate binding mode, in sharp contrast to binding behaviors observed in other thiol dioxygenases. We observed a substrate-bound B-type dinitrosyl iron center complex in ADO, suggesting the possibility of dioxygen binding to the iron ion in a side-on mode. Moreover, we observed a substrate-mediated reduction of the ferric to the ferrous oxidation state at the iron center. Subsequent MS analysis indicated corresponding disulfide formation of the substrates, suggesting that the presence of the substrate could reactivate ADO to defend against oxidative stress. The findings of this work contribute to the understanding of the substrate interaction in ADO and fill a gap in our knowledge of the substrate specificity of thiol dioxygenases.more » « less
-
NA (Ed.)Carotenoid cleavage dioxygenases (CCDs) are non-heme FeII enzymes that catalyze the oxidative cleavage of alkene bonds in carotenoids, stilbenoids, and related compounds. How these enzymes control the reaction of O2 with their alkene substrates is unclear. Here, we apply spectroscopy in conjunction with X-ray crystallography to define the iron coordination geometry of a model CCD, CAO1, in its resting state and following substrate binding and coordination sphere substitutions. Resting CAO1 exhibits a five-coordinate (5C), square pyramidal FeII center that undergoes steric distortion towards a trigonal bipyramidal geometry in the presence of piceatannol. Titrations with the O2-analog, nitric oxide (NO), show a >100-fold increase in iron-NO affinity upon substrate binding, defining a crucial role for the substrate in activating the FeII site for O2 reactivity. The importance of the 5C FeII structure for reactivity was probed through mutagenesis of the second-sphere Thr151 residue of CAO1, which occludes ligand binding at the sixth coordination position. A T151G substitution resulted in the conversion of the iron center to a six-coordinate (6C) state and a 135-fold reduction in apparent catalytic efficiency towards piceatannol compared to the wild-type enzyme. Substrate complexation resulted in partial 6C to 5C conversion, indicating solvent dissociation from the iron center. Additional substitutions at this site demonstrated a general functional importance of the occluding residue within the CCD superfamily. Taken together, these data suggest an ordered mechanism of CCD catalysis occurring via substrate-promoted solvent replacement by O2. CCDs thus represent a new class of mononuclear non-heme FeII enzymes.more » « less
-
The synthesis of quinolinic acid from tryptophan is a critical step in the de novo biosynthesis of nicotinamide adenine dinucleotide (NAD+) in mammals. Herein, the nonheme iron-based 3-hydroxyanthranilate-3,4-dioxygenase responsible for quinolinic acid production was studied by performing time-resolvedin crystalloreactions monitored by UV-vis microspectroscopy, electron paramagnetic resonance (EPR) spectroscopy, and X-ray crystallography. Seven catalytic intermediates were kinetically and structurally resolved in the crystalline state, and each accompanies protein conformational changes at the active site. Among them, a monooxygenated, seven-membered lactone intermediate as a monodentate ligand of the iron center at 1.59-Å resolution was captured, which presumably corresponds to a substrate-based radical species observed by EPR using a slurry of small-sized single crystals. Other structural snapshots determined at around 2.0-Å resolution include monodentate and subsequently bidentate coordinated substrate, superoxo, alkylperoxo, and two metal-bound enol tautomers of the unstable dioxygenase product. These results reveal a detailed stepwise O-atom transfer dioxygenase mechanism along with potential isomerization activity that fine-tunes product profiling and affects the production of quinolinic acid at a junction of the metabolic pathway.more » « less
An official website of the United States government

