Abstract We consider the stability of the circular Fermi surface of a two-dimensional electron gas system against an elliptical deformation induced by an anisotropic Coulomb interaction potential. We use the jellium approximation for the neutralizing background and treat the electrons as fully spin-polarized (spinless) particles with a constant isotropic (effective) mass. The anisotropic Coulomb interaction potential considered in this work is inspired from studies of two-dimensional electron gas systems in the quantum Hall regime. We use a Hartree–Fock procedure to obtain analytical results for two special Fermi liquid quantum electronic phases. The first one corresponds to a system with circular Fermi surface while the second one corresponds to a liquid anisotropic phase with a specific elliptical deformation of the Fermi surface that gives rise to the lowest possible potential energy of the system. The results obtained suggest that, for the most general situations, neither of these two Fermi liquid phases represent the lowest energy state of the system within the framework of the family of states considered in this work. The lowest energy phase is one with an optimal elliptical deformation whose specific value is determined by a complex interplay of many factors including the density of the system.
more »
« less
Two-dimensional finite quantum Hall clusters of electrons with anisotropic features
Abstract Low-dimensional nano and two-dimensional materials are of great interest to many disciplines and may have a lot of applications in fields such as electronics, optoelectronics, and photonics. One can create quantum Hall phases by applying a strong magnetic field perpendicular to a two-dimensional electron system. One characterizes the nature of the system by looking at magneto-transport data. There have been a few quantum phases seen in past experiments on GaAs/AlGaAs heterostructures that manifest anisotropic magnetoresistance, typically, in high Landau levels. In this work, we model the source of anisotropy as originating from an internal anisotropic interaction between electrons. We use this framework to study the possible anisotropic behavior of finite clusters of electrons at filling factor 1/6 of the lowest Landau level.
more »
« less
- Award ID(s):
- 2001980
- PAR ID:
- 10387784
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An almost ideal two-dimensional system of electrons can now be easily created in semiconductor heterojunctions. The quantum Hall effect state of the electrons is induced via the application of a strong perpendicular magnetic under specific quantum conditions. The most robust integer and/or fractional quantum Hall states already observed show the expected characteristic magnetoresistance for such systems. However, anisotropic patterns and features in transport properties have been seen for a few other peculiar cases. The origin of such anisotropic patterns may have various mechanisms or may also be due the specific details of the system and material such as the isotropic or anisotropic nature of the effective mass of electrons, the nature of the host substrate parameters, the nature of the interaction potentials, as well as other subtler effects. The interplay between all these factors can lead to many outcomes. In this work we consider small quantum Hall states of electrons at filling factor 1/6 and study the appearance of such anisotropic patterns as a result of some form of innate interaction anisotropy in the system.more » « less
-
Wigner predicted that when the Coulomb interactions between electrons become much stronger than their kinetic energy, electrons crystallize into a closely packed lattice1. A variety of two-dimensional systems have shown evidence for Wigner crystals2,3,4,5,6,7,8,9,10,11 (WCs). However, a spontaneously formed classical or quantum WC has never been directly visualized. Neither the identification of the WC symmetry nor direct investigation of its melting has been accomplished. Here we use high-resolution scanning tunnelling microscopy measurements to directly image a magnetic-field-induced electron WC in Bernal-stacked bilayer graphene and examine its structural properties as a function of electron density, magnetic field and temperature. At high fields and the lowest temperature, we observe a triangular lattice electron WC in the lowest Landau level. The WC possesses the expected lattice constant and is robust between filling factor ν ≈ 0.13 and ν ≈ 0.38 except near fillings where it competes with fractional quantum Hall states. Increasing the density or temperature results in the melting of the WC into a liquid phase that is isotropic but has a modulated structure characterized by the Bragg wavevector of the WC. At low magnetic fields, the WC unexpectedly transitions into an anisotropic stripe phase, which has been commonly anticipated to form in higher Landau levels. Analysis of individual lattice sites shows signatures that may be related to the quantum zero-point motion of electrons in the WC lattice.more » « less
-
Interacting electrons in flat bands give rise to a variety of quantum phases. One fundamental aspect of such states is the ordering of the various flavours—such as spin or valley—that the electrons can possess and the excitation spectrum of the broken-symmetry states that they form. These properties cannot be probed directly with electrical transport measurements. The zeroth Landau level of monolayer graphene with fourfold spin–valley degeneracy is a model system for such investigations, but the nature of its broken-symmetry states—particularly at partial fillings—is still not understood. Here we demonstrate a non-invasive spectroscopic technique with a scanning tunnelling microscope and use it to perform measurements of the valley polarization of the electronic wavefunctions and their excitation spectrum in the partially filled zeroth Landau level of graphene. We can extract information such as the strength of the Haldane pseudopotentials that characterize the repulsive interactions underlying the fractional quantum states. Our experiments also demonstrate that fractional quantum Hall phases are built upon broken-symmetry states that persist at partial filling. Our experimental approach quantifies the valley phase diagram of the partially filled Landau level as a model flat-band platform, which is applicable to other graphene-based electronic systems.more » « less
-
The loss of any symmetry in a system leads to quantum problems that are typically very difficult to solve. Such a situation arises for particles with anisotropic mass, like electrons in various semiconductor host materials, where it is known that they may have an anisotropic effective mass. In this work, we consider the quantum problem of a spinless charged particle with anisotropic mass in two dimensions and study the resulting energy and eigenstate spectrum in a uniform constant perpendicular magnetic field when a Landau gauge is adopted. The exact analytic solution to the problem is obtained for arbitrary values of the anisotropic mass using a mathematical technique that relies on the scaling of the original coordinates. The characteristic features of the energy spectrum and corresponding eigenstate wave functions are analyzed. The results of this study are expected to be of interest to quantum Hall effect theory.more » « less
An official website of the United States government

