skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A synthesis of the biogeographical distribution of Rotifera in Africa
Abstract The rotifer fauna of Africa has been studied for >100 years, but there has been no recent synthesis. We compiled data from 265 publications that reported information on African rotifers. Our dataset yielded information on the distribution of 765 taxa from ~1850 separate sites; these included both natural and artificial habitats such as lakes, ponds, puddles, oases, artificial systems, rivers and wetlands. A heat map of predicted rotifer biodiversity indicated that the greatest diversity should be present in the sub-Saharan region including a large hotspot in Mali and several smaller ones scattered in that region. Lakes Kariba, Tanganyika and Malawi showed high-predicted diversity, but surprisingly, Lake Victoria had lower diversity than expected. Two regions showed unusually high-predicted diversity: northwestern Algeria extending into Morocco and Egypt. Equatorial Africa is rich in habitats well suited for rotifers, yet their predicted biodiversity seems low. Latitude and elevation were negatively correlated with richness, while permanent water source and littoral zone were positively correlated according to generalized linear modeling results. Partial RDA analyses showed significant correlations among several environmental features and species occurrences. It is clear that more survey work remains to be done to achieve a better understanding of African rotifers.  more » « less
Award ID(s):
2051704
PAR ID:
10387815
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Plankton Research
Volume:
45
Issue:
1
ISSN:
0142-7873
Format(s):
Medium: X Size: p. 65-81
Size(s):
p. 65-81
Sponsoring Org:
National Science Foundation
More Like this
  1. The aquatic microfauna of Africa is poorly characterized, especially in the case of planktonic rotifers inhabiting waterbodies other than large lakes. In addition, little is known about factors that structure these communities. Here, we assessed the roles of climatic region, habitat type, macrophyte abundance, and a suite of abiotic environmental factors in determining rotifer species’ richness and composition in waterbodies located across a 2300 m altitudinal gradient in Kenya. Plankton samples were obtained from 33 sites in 23 waterbodies. From these, 93 rotifer taxa were identified from 18 families comprising 31 genera. About one fourth (25 taxa) were new records for Kenya, from which 4 species were new for Africa. Species richness was the highest in permanent as compared to temporary habitats. Richness was strongly positively correlated with all environmental factors and strongly influenced by macrophyte abundance. When spatial structure was added to the GLM model, species richness was no longer significantly correlated with macrophytes. Unconstrained detrended correspondence analysis conducted at the species level indicated four suites of species associated with either (1) longitude, (2) elevation, (3) latitude, temperature, and hydroperiod, or (4) macrophytes. This study contributes to our knowledge of the patterns of rotifer biogeography and species richness in Africa. 
    more » « less
  2. Afrotropical inland waters are highly diverse ecosystems; however, they remain poorly studied, especially for rotifers. Here, we contributed to the knowledge of the rotifer species richness in the largely understudied African countries of Angola and Ghana. We assessed the roles of habitat type and a suite of abiotic environmental factors in determining rotifer species richness of Ghana. A total of 37 sites (Ghana 32, Angola 5) in 19 water bodies from a variety of aquatic habitat types were sampled. In Ghana, we identified 118 taxa (105 species or subspecies level, 13 identified to genus). We identified 15 taxa (13 species) in the Angola samples. For Ghana, 100 of 118 (~85%) taxa were new records for the country, of which 13 species (~11%) were also new records for Africa. Nearly all the species (~93%) were new records for Angola. Species richness was positively correlated with conductivity and reservoir habitat type and negatively with pH. Redundancy analysis (RDA), conducted at the species level for the Ghana dataset, indicated suites of species associated with latitude, longitude, temperature, TDS, or pH. We also evaluated the effect of climate on species distribution in 27 African countries by conducting a review of all reports from Africa to determine factors associated with species richness. A Spearman’s correlation confirmed a significant positive correlation between the number of rotifer species and the number of climatic regions (R = 0.53, p < 0.001) for certain countries, based on species distributions in relation to Köppen–Geiger climate regions. This fact validates the environmental heterogeneity hypothesis for African rotifers. Lastly, we predicted that rotifer species richness in Ghana, as a country with a tropical climate, could approach ~190 taxa, while in climatically heterogeneous Angola we predict ~200 taxa. This study contributes to our knowledge of rotifer biogeography and species richness patterns in Africa. 
    more » « less
  3. East Africa is a global biodiversity hotspot and exhibits distinct longitudinal diversity gradients from west to east in freshwater fishes and forest mammals. The assembly of this exceptional biodiversity and the drivers behind diversity gradients remain poorly understood, with diversification often studied at local scales and less attention paid to biotic exchange between Afrotropical regions. Here, we reconstruct a river system that existed for several millennia along the now semiarid Kenya Rift Valley during the humid early Holocene and show how this river system influenced postglacial dispersal of fishes and mammals due to its dual role as a dispersal corridor and barrier. Using geomorphological, geochronological, isotopic, and fossil analyses and a synthesis of radiocarbon dates, we find that the overflow of Kenyan rift lakes between 12 and 8 ka before present formed a bidirectional river system consisting of a “Northern River” connected to the Nile Basin and a “Southern River,” a closed basin. The drainage divide between these rivers represented the only viable terrestrial dispersal corridor across the rift. The degree and duration of past hydrological connectivity between adjacent river basins determined spatial diversity gradients for East African fishes. Our reconstruction explains the isolated distribution of Nilotic fish species in modern Kenyan rift lakes, Guineo-Congolian mammal species in forests east of the Kenya Rift, and recent incipient vertebrate speciation and local endemism in this region. Climate-driven rearrangements of drainage networks unrelated to tectonic activity contributed significantly to the assembly of species diversity and modern faunas in the East African biodiversity hotspot. 
    more » « less
  4. ABSTRACT AimFerns are globally distributed, yet the number of studies examining the historical evolution of African taxa is relatively low. Investigation of the evolution of African fern diversity is critical in order to understand patterns and processes that have global relevance (e.g., the pantropical diversity disparity [PDD] pattern). This study aims to examine when and from where a globally distributed fern lineage arrived in sub‐Saharan Africa, to obtain a better understanding of potential processes contributing to patterns of diversity across the region. LocationGlobal, sub‐Saharan Africa. TaxonAsplenium(Aspleniaceae). MethodsWe analysed five loci from 537Aspleniumtaxa using a maximum likelihood (IQ‐Tree) phylogenetic framework. For age estimation, we performed penalised likelihood as implemented in treePL, and executed a Bayesian analysis using BEAST. Biogeographical analyses were carried out using BioGeoBEARS. ResultsMost dispersals into Africa occurred within the last ~55 myr, with the highest diversity of sub‐Saharan African taxa concentrated in two clades, each of which descended from an Asian ancestor. Additional dispersals to sub‐Saharan Africa can be found throughout the phylogeny. Lastly, potential cryptic species diversity exists withinAspleniumas evidenced by several polyphyletic taxa. Main ConclusionsWe recover multiple dispersals ofAspleniumto sub‐Saharan Africa, with two major lineages likely diversifying after arrival. 
    more » « less
  5. Abstract A major goal of community ecology is understanding the processes responsible for generating biodiversity patterns along spatial and environmental gradients. In stream ecosystems, system‐specific conceptual frameworks have dominated research describing biodiversity change along longitudinal gradients of river networks. However, support for these conceptual frameworks has been mixed, mainly applicable to specific stream ecosystems and biomes, and these frameworks have placed less emphasis on general mechanisms driving biodiversity patterns. Rethinking biodiversity patterns and processes in stream ecosystems with a focus on the overarching mechanisms common across ecosystems will provide a more holistic understanding of why biodiversity patterns vary along river networks. In this study, we apply the theory of ecological communities (TEC) conceptual framework to stream ecosystems to focus explicitly on the core ecological processes structuring communities: dispersal, speciation, niche selection, and ecological drift. Using a unique case study from high‐elevation networks of connected lakes and streams, we sampled stream invertebrate communities in the Sierra Nevada, California, USA to test established stream ecology frameworks and compared them with the TEC framework. Local diversity increased and β‐diversity decreased moving downstream from the headwaters, consistent with the river continuum concept and the small but mighty framework of mountain stream biodiversity. Local diversity was also structured by distance below upstream lakes, where diversity increased with distance below upstream lakes, in support of the serial discontinuity concept. Despite some support for the biodiversity patterns predicted from the stream ecology frameworks, no single framework was fully supported, suggesting “context dependence.” By framing our results under the TEC, we found that species diversity was structured by niche selection, where local diversity was highest in environmentally favorable sites. Local diversity was also highest in sites with small community sizes, countering the predicted effects of ecological drift. Moreover, higher β‐diversity in the headwaters was influenced by dispersal and niche selection, where environmentally harsh and spatially isolated sites exhibit higher community variation. Taken together our results suggest that combining system‐specific ecological frameworks with the TEC provides a powerful approach for inferring the mechanisms driving biodiversity patterns and provides a path toward generalization of biodiversity research across ecosystems. 
    more » « less