skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Value of Teaching Leadership Skills to STEM Graduate Students and Postdocs
To create and achieve awesome things in the world together, STEM (science, technology, engineering and mathematics) professionals need to be able to lead effectively. Leadership can be thought of as “a process of social influence through which an individual enlists and mobilizes the aid of others in the attainment of a collective goal” (Chemers, 2001). In the Institute for Scientist & Engineers Educators’ Professional Development Program (PDP), STEM graduate students and postdocs learned, practiced, and reflected on leadership skills and strategies explicitly. Design Team Leaders (DTLs) practiced leading their teams, all participants facilitated inquiry (led their students in learning), and some (in later years) learned through the inclusive leadership PDP strand. In this panel paper, we reflect on what we learned from these experiences and discuss how we apply PDP leadership training daily in our work beyond the PDP. We review key principles about inclusive leadership, such as building an image as a credible leader; how to lead meetings; and how to build feelings of motivation, belonging, trust, and shared ownership among team members. We also share case studies of our experiences applying PDP leadership training in roles as co-director for an African summer school, facilitator for a physics equity project, middle/high school math and science teacher, mentor for new teachers, teaching professor and online curriculum designer, and project manager for a non-profit. Last, we offer recommendations for stakeholders who want to support STEM graduate students’ and postdocs’ development as inclusive leaders.  more » « less
Award ID(s):
1743117
PAR ID:
10387819
Author(s) / Creator(s):
; ; ;
Editor(s):
Seagroves, Scott; Barnes, Austin; Metevier, Anne; Porter, Jason; Hunter, Lisa
Publisher / Repository:
Institute for Scientist & Engineer Educators (ISEE)
Date Published:
Page Range / eLocation ID:
359-370
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Seagroves, Scott; Barnes, Austin; Metevier, Anne; Porter, Jason; Hunter, Lisa (Ed.)
    In many organizations (e.g., higher education, non-profits, small companies), individuals are called upon to lead small groups of people to complete one or more tasks both in formal roles and in informal settings. For example, department heads, committee chairs, project leads, and program managers are all roles that require an individual to utilize leadership skills to lead their team to the successful completion of the tasks at hand. However, in many science, technology, engineering, and math (STEM) fields and their associated jobs, training and support in leadership development are often lacking. To meet this need, the Institute for Scientist and Engineer Educators (ISEE) at the University of California - Santa Cruz (UCSC) made supporting and mentoring leadership development a key component of the Professional Development Program (PDP) for graduate students and postdoctoral scholars in STEM, which ran for over 20 years. Building off of the ISEE leadership development model (ISEE 2020), this workshop is designed to give professionals an opportunity to learn about and practice important leadership skills that can be used in their organizations. In this workshop, participants learn to apply three elements of effective leadership that are useful in practice and inclusive of multiple perspectives on leadership. Participants apply actionable leadership practices to their own challenges at work and develop the language to discuss their own leadership skills. Workshop duration: 15 minutes individual reading, 2 hours in-person workshop, 15 minutes follow up. 
    more » « less
  2. Seagroves, Scott; Barnes, Austin; Metevier, Anne; Porter, Jason; Hunter, Lisa (Ed.)
    Transitioning from graduate student roles in academia to professional careers in industry and government affords ISEE’s Professional Development Program (PDP) alumni the opportunity to apply lessons and techniques learned at the PDP to new environments with new goals. In mission-focused government roles, PDP alumni apply their expertise in inquiry-style teaching to mentor junior staff and develop projects that meet governmental requirements, while preserving STEM learner identities. Alumni find that the principles of inquiry-style teaching have applicability across professional development spectrums — from mentoring high school interns through training postdoctoral researchers and managing teams of diverse career stages. In industry, where fast-paced corporate goals drive innovation, alumni have found that PDP principles in developing explicit content and practice learning outcomes have helped them develop unique roles within their companies. Additionally, across both industry and government roles, all PDP alumni on this panel report that PDP’s focus on leadership development, effective meeting strategies, and inclusive management practices have readied them for their post-academia careers. 
    more » « less
  3. Seagroves, Scott; Barnes, Austin; Metevier, Anne; Porter, Jason; Hunter, Lisa (Ed.)
    The Akamai Internship in Hawai‘i and the Professional Development Program (PDP) address key issues of sustaining a diverse, equitable, and inclusive STEM workforce in industry and academia. Established in 2002, the Akamai program builds capacity to overcome the brain-drain workforce problem that Hawaiʻi faces by connecting local undergraduate students with internship opportunities in the STEM industries on the islands of Maui and Hawaiʻi. The PDP provides opportunities for graduate students, early-career scientists and industry leaders to learn effective andragogical practices for teaching science and engineering to the next generation at the undergraduate level. A unique, grounding aspect of the Akamai program across all cohorts is a week-long course preparing interns to work with their local industry partners and build an inclusive community. The course is co-led by Akamai program staff and PDP alumni in collaboration with PDP design teams who run complementary inquiry learning activities. Since the first cohort of 2003, 451 interns and around 100 design team members have participated in Akamai. Of the 451 interns who participated in the Akamai program, at least 8 participants have become PDP design team members. The purpose of this panel discussion is to feature four of those alumni that participated in both Akamai and PDP programs. The panelists will share the factors that influenced them to become a PDP instructor as well as highlight the impacts that both programs had in shaping their respective life and career pathways. 
    more » « less
  4. Abstract Learning science, technology, engineering, and mathematics (STEM) subjects starting at a young age helps prepare students for a variety of careers both inside and outside of the sciences. Yet, addressing integrated STEM in an elementary school setting can be challenging. Teacher leadership is one way to address this challenge. The purpose of this qualitative, descriptive case study is to understand how participation in the NebraskaSTEM Noyce Master Teaching Fellowship project impacted elementary STEM teacher leadership identities. Our findings suggest participation in the project contributed to different layers of teacher leadership identity (as a STEM learner, as a STEM teacher, and as a STEM teacher leader). These findings suggest professional development should be tailored to address empowering specific layers of STEM teacher leaders' professional identity. Other teacher leadership development projects may want to consider how to structure their projects to empower teachers based on the identities and experiences of those teachers. 
    more » « less
  5. The efficacy of leadership training on undergraduate engineering and technology students before and during the COVID-19 pandemic was examined. A leadership development program (LDP) at Southern Illinois University Carbondale (SIUC) emphasized active involvement and inter-personal relationship among participants to build a community of STEM leaders. The LDP recruited academically talented and economically disadvantaged STEM majors from partner community colleges and trained them as leaders. The directors framed the LPD within Social Interdependence Theory to promote and enable students to cooperatively learn to lead themselves, build leadership skills, and participate in leadership teams. The COVID-19 pandemic imposed extra challenges on implementing this model when teaching and learning switched to an online modality. Program organizers followed the program tenets and “Challenged the Process” to find innovative ways to maintain connections among and with students. Working together, students learned to apply their leadership training by organizing and completing service projects. Additionally, students practiced leadership skills within registered student organizations. Through dedication by students and coaches, the program exceeded expectations through the pandemic. The LDP continued with 100% graduation and 100% retention rates. Students in the LDP continued to show large, statistically significant gains in Leadership Self-efficacy, Motivation to Lead, and Grit compared to peers. This model of leadership development conceptually framed within the Social Interdependence Theory was effective. The LDP at SIUC is an exemplary program and could be a model for engineering leadership programs to follow. 
    more » « less