The double differential cross sections of the Drell–Yan lepton pair (
Thin film evaporation is a widelyused thermal management solution for micro/nanodevices with high energy densities. Local measurements of the evaporation rate at a liquidvapor interface, however, are limited. We present a continuous profile of the evaporation heat transfer coefficient (
 NSFPAR ID:
 10387854
 Publisher / Repository:
 Nature Publishing Group
 Date Published:
 Journal Name:
 Scientific Reports
 Volume:
 12
 Issue:
 1
 ISSN:
 20452322
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract , dielectron or dimuon) production are measured as functions of the invariant mass$$\ell ^+\ell ^$$ ${\ell}^{+}{\ell}^{}$ , transverse momentum$$m_{\ell \ell }$$ ${m}_{\ell \ell}$ , and$$p_{\textrm{T}} (\ell \ell )$$ ${p}_{\text{T}}\left(\ell \ell \right)$ . The$$\varphi ^{*}_{\eta }$$ ${\phi}_{\eta}^{\ast}$ observable, derived from angular measurements of the leptons and highly correlated with$$\varphi ^{*}_{\eta }$$ ${\phi}_{\eta}^{\ast}$ , is used to probe the low$$p_{\textrm{T}} (\ell \ell )$$ ${p}_{\text{T}}\left(\ell \ell \right)$ region in a complementary way. Dilepton masses up to 1$$p_{\textrm{T}} (\ell \ell )$$ ${p}_{\text{T}}\left(\ell \ell \right)$ are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various$$\,\text {Te\hspace{.08em}V}$$ $\phantom{\rule{0ex}{0ex}}\text{Te}\phantom{\rule{0ex}{0ex}}\text{V}$ ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3$$m_{\ell \ell }$$ ${m}_{\ell \ell}$ of proton–proton collisions recorded with the CMS detector at the LHC at a centreofmass energy of 13$$\,\text {fb}^{1}$$ $\phantom{\rule{0ex}{0ex}}{\text{fb}}^{1}$ . Measurements are compared with predictions based on perturbative quantum chromodynamics, including softgluon resummation.$$\,\text {Te\hspace{.08em}V}$$ $\phantom{\rule{0ex}{0ex}}\text{Te}\phantom{\rule{0ex}{0ex}}\text{V}$ 
Abstract We present the first unquenched latticeQCD calculation of the form factors for the decay
at nonzero recoil. Our analysis includes 15 MILC ensembles with$$B\rightarrow D^*\ell \nu $$ $B\to {D}^{\ast}\ell \nu $ flavors of asqtad sea quarks, with a strange quark mass close to its physical mass. The lattice spacings range from$$N_f=2+1$$ ${N}_{f}=2+1$ fm down to 0.045 fm, while the ratio between the light and the strangequark masses ranges from 0.05 to 0.4. The valence$$a\approx 0.15$$ $a\approx 0.15$b andc quarks are treated using the Wilsonclover action with the Fermilab interpretation, whereas the light sector employs asqtad staggered fermions. We extrapolate our results to the physical point in the continuum limit using rooted staggered heavylight meson chiral perturbation theory. Then we apply a modelindependent parametrization to extend the form factors to the full kinematic range. With this parametrization we perform a joint latticeQCD/experiment fit using several experimental datasets to determine the CKM matrix element . We obtain$$V_{cb}$$ ${V}_{\mathrm{cb}}$ . The first error is theoretical, the second comes from experiment and the last one includes electromagnetic and electroweak uncertainties, with an overall$$\left V_{cb}\right = (38.40 \pm 0.68_{\text {th}} \pm 0.34_{\text {exp}} \pm 0.18_{\text {EM}})\times 10^{3}$$ $\left({V}_{\mathrm{cb}}\right)=(38.40\pm 0.{68}_{\text{th}}\pm 0.{34}_{\text{exp}}\pm 0.{18}_{\text{EM}})\times {10}^{3}$ , which illustrates the tensions between the experimental data sets, and between theory and experiment. This result is in agreement with previous exclusive determinations, but the tension with the inclusive determination remains. Finally, we integrate the differential decay rate obtained solely from lattice data to predict$$\chi ^2\text {/dof} = 126/84$$ ${\chi}^{2}\text{/dof}=126/84$ , which confirms the current tension between theory and experiment.$$R(D^*) = 0.265 \pm 0.013$$ $R\left({D}^{\ast}\right)=0.265\pm 0.013$ 
Abstract A search is reported for pairs of light Higgs bosons (
) produced in supersymmetric cascade decays in final states with small missing transverse momentum. A data set of LHC$${\textrm{H}} _1$$ ${\text{H}}_{1}$ collisions collected with the CMS detector at$$\hbox {pp}$$ $\text{pp}$ and corresponding to an integrated luminosity of 138$$\sqrt{s}=13\,\text {TeV} $$ $\sqrt{s}=13\phantom{\rule{0ex}{0ex}}\text{TeV}$ is used. The search targets events where both$$\,\text {fb}^{1}$$ $\phantom{\rule{0ex}{0ex}}{\text{fb}}^{1}$ bosons decay into Equation missing<#comment/>pairs that are reconstructed as largeradius jets using substructure techniques. No evidence is found for an excess of events beyond the background expectations of the standard model (SM). Results from the search are interpreted in the nexttominimal supersymmetric extension of the SM, where a “singlino” of small mass leads to squark and gluino cascade decays that can predominantly end in a highly Lorentzboosted singletlike$${\textrm{H}} _1$$ ${\text{H}}_{1}$ and a singlinolike neutralino of small transverse momentum. Upper limits are set on the product of the squark or gluino pair production cross section and the square of the Equation missing<#comment/>branching fraction of the$${\textrm{H}} _1$$ ${\text{H}}_{1}$ in a benchmark model containing almost massdegenerate gluinos and lightflavour squarks. Under the assumption of an SMlike Equation missing<#comment/>branching fraction,$${\textrm{H}} _1$$ ${\text{H}}_{1}$ bosons with masses in the range 40–120$${\textrm{H}} _1$$ ${\text{H}}_{1}$ arising from the decays of squarks or gluinos with a mass of 1200–2500$$\,\text {GeV}$$ $\phantom{\rule{0ex}{0ex}}\text{GeV}$ are excluded at 95% confidence level.$$\,\text {GeV}$$ $\phantom{\rule{0ex}{0ex}}\text{GeV}$ 
Abstract We prove that the Hilbert scheme of
k points on ($${\mathbb {C}}^2$$ ${C}^{2}$ ) is selfdual under threedimensional mirror symmetry using methods of geometry and integrability. Namely, we demonstrate that the corresponding quantum equivariant Ktheory is invariant upon interchanging its Kähler and equivariant parameters as well as inverting the weight of the$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ ${\text{Hilb}}^{k}\left[{C}^{2}\right]$ action. First, we find a twoparameter family$${\mathbb {C}}^\times _\hbar $$ ${C}_{\u0127}^{\times}$ of selfmirror quiver varieties of type A and study their quantum Ktheory algebras. The desired quantum Ktheory of$$X_{k,l}$$ ${X}_{k,l}$ is obtained via direct limit$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ ${\text{Hilb}}^{k}\left[{C}^{2}\right]$ and by imposing certain periodic boundary conditions on the quiver data. Throughout the proof, we employ the quantum/classical (qLanglands) correspondence between XXZ Bethe Ansatz equations and spaces of twisted$$l\longrightarrow \infty $$ $l\u27f6\infty $ opers. In the end, we propose the 3d mirror dual for the moduli spaces of torsionfree rank$$\hbar $$ $\u0127$N sheaves on with the help of a different (threeparametric) family of type A quiver varieties with known mirror dual.$${\mathbb {P}}^2$$ ${P}^{2}$ 
Abstract We introduce a family of Finsler metrics, called the
Fisher–Rao metrics$$L^p$$ ${L}^{p}$ , for$$F_p$$ ${F}_{p}$ , which generalizes the classical Fisher–Rao metric$$p\in (1,\infty )$$ $p\in (1,\infty )$ , both on the space of densities$$F_2$$ ${F}_{2}$ and probability densities$${\text {Dens}}_+(M)$$ ${\text{Dens}}_{+}\left(M\right)$ . We then study their relations to the Amari–C̆encov$${\text {Prob}}(M)$$ $\text{Prob}\left(M\right)$ connections$$\alpha $$ $\alpha $ from information geometry: on$$\nabla ^{(\alpha )}$$ ${\nabla}^{\left(\alpha \right)}$ , the geodesic equations of$${\text {Dens}}_+(M)$$ ${\text{Dens}}_{+}\left(M\right)$ and$$F_p$$ ${F}_{p}$ coincide, for$$\nabla ^{(\alpha )}$$ ${\nabla}^{\left(\alpha \right)}$ . Both are pullbacks of canonical constructions on$$p = 2/(1\alpha )$$ $p=2/(1\alpha )$ , in which geodesics are simply straight lines. In particular, this gives a new variational interpretation of$$L^p(M)$$ ${L}^{p}\left(M\right)$ geodesics as being energy minimizing curves. On$$\alpha $$ $\alpha $ , the$${\text {Prob}}(M)$$ $\text{Prob}\left(M\right)$ and$$F_p$$ ${F}_{p}$ geodesics can still be thought as pullbacks of natural operations on the unit sphere in$$\nabla ^{(\alpha )}$$ ${\nabla}^{\left(\alpha \right)}$ , but in this case they no longer coincide unless$$L^p(M)$$ ${L}^{p}\left(M\right)$ . Using this transformation, we solve the geodesic equation of the$$p=2$$ $p=2$ connection by showing that the geodesic are pullbacks of projections of straight lines onto the unit sphere, and they always cease to exists after finite time when they leave the positive part of the sphere. This unveils the geometric structure of solutions to the generalized Proudman–Johnson equations, and generalizes them to higher dimensions. In addition, we calculate the associate tensors of$$\alpha $$ $\alpha $ , and study their relation to$$F_p$$ ${F}_{p}$ .$$\nabla ^{(\alpha )}$$ ${\nabla}^{\left(\alpha \right)}$