skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Pico‐ and nanoplankton communities on a near to offshore transect along the continental shelf of the northwestern Gulf of Mexico in the aftermath of Hurricane Harvey
Abstract

Hurricane Harvey delivered over 124 trillion liters of freshwater to the Texas–Louisiana coast and the northwestern Gulf of Mexico (GOM) in late August‐early September 2017. Environmental conditions, size‐fractionated phytoplankton biomass, and pico‐ and nanoplankton abundances (picocyanobacteria, picoeukaryotes, autotrophic, and heterotrophic nanoplankton) were characterized along nearshore‐offshore transects prior to Hurricane Harvey (late July 2017) and in the 3 weeks to 6 months following the storm (September 2017 to March 2018). To understand the extent to which observed changes in the aquatic environment and plankton communities could be attributed to Hurricane Harvey (vs. seasonal or interannual variability), salinity, temperature, and phytoplankton biomass from historical data (2006–2018) were also analyzed. Nearshore stations from September and October 2017 showed significantly lower salinities and overall phytoplankton biomass compared to historical data. Inorganic nitrogen concentrations were minimal in October. Pico‐ and nanoplankton abundances were lower in September and October than prior to the storm, with the exception of picocyanobacteria. In contrast, post‐storm biomass at mid‐shelf stations was within the historical average, while pico‐ and nanoplankton abundances were higher. Offshore stations showed little change in biomass or abundances following the storm. Pre‐storm assemblages of pico‐ and nanoplankton in July 2017 were distinct from those in post‐storm months, and variance in these assemblages and specific group abundances was tied to inorganic nutrients, salinity, and temperature. These results point to significant changes in important members of the plankton that occurred in GOM continental shelf waters following a major hurricane, with important implications for oceanic food webs and biogeochemical cycles.

 
more » « less
PAR ID:
10387867
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
66
Issue:
7
ISSN:
0024-3590
Page Range / eLocation ID:
p. 2779-2796
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Daily oscillations in photosynthetically active radiation strongly influence the timing of metabolic processes in picocyanobacteria, but it is less clear how the light-dark cycle affects the activities of their consumers. We investigated the relationship between marine picocyanobacteria and nanoplanktonic consumers throughout the diel cycle to determine whether heterotrophic and mixotrophic protists (algae with phagotrophic ability) display significant periodicity in grazing pressure. Carbon biomass of Prochlorococcus and Synechococcus was estimated continuously from abundances and cell size measurements made by flow cytometry. Picocyanobacterial dynamics were then compared to nanoplankton abundances and ingestion of fluorescently labeled bacteria measured every 4 h during a 4 d survey in the North Pacific Subtropical Gyre. Grazing of the labeled bacteria by heterotrophic nanoplankton was significantly greater at night than during the day. The grazing activity of mixotrophic nanoplankton showed no diel periodicity, suggesting that they may feed continuously, albeit at lower rates than heterotrophic nanoplankton, to alleviate nutrient limitation in this oligotrophic environment. Diel changes in Prochlorococcus biomass indicated that they could support substantial growth of nanoplankton if those grazers are the main source of picocyanobacterial mortality, and that grazers may contribute to temporally stable abundances of picocyanobacteria. 
    more » « less
  2. About 190 km south of the Texas–Louisiana border, the East and West Flower Garden Banks (FGB) have maintained > 50% coral cover with infrequent and minor incidents of disease or bleaching since monitoring began in the 1970s. However, a mortality event, affecting 5.6 ha (2.6% of the area) of the East FGB, occurred in late July 2016 and coincided with storm-generated freshwater runoff extending offshore and over the reef system. To capture the immediate effects of storm-driven freshwater runoff on coral and symbiont physiology, we leveraged the heavy rainfall associated with Hurricane Harvey in late August 2017 by sampling FGB corals at two time points: September 2017, when surface water salinity was reduced (∼34 ppt); and 1 month later when salinity had returned to typical levels (∼36 ppt in October 2017). Tissue samples (N = 47) collected midday were immediately preserved for gene expression profiling from two congeneric coral species (Orbicella faveolata and Orbicella franksi) from the East and West FGB to determine the physiological consequences of storm-derived runoff. In the coral, differences between host species and sampling time points accounted for the majority of differentially expressed genes. Gene ontology enrichment for genes differentially expressed immediately after Hurricane Harvey indicated increases in cellular oxidative stress responses. Although tissue loss was not observed on FGB reefs following Hurricane Harvey, our results suggest that poor water quality following this storm caused FGB corals to experience sub-lethal stress. We also found dramatic expression differences across sampling time points in the coral’s algal symbiont, Breviolum minutum. Some of these differentially expressed genes may be involved in the symbionts’ response to changing environments, including a group of differentially expressed post-transcriptional RNA modification genes. In this study, we cannot disentangle the effects of reduced salinity from the collection time point, so these expression patterns could also be related to seasonality. These findings highlight the urgent need for continued monitoring of these reef systems to establish a baseline for gene expression of healthy corals in the FGB system across seasons, as well as the need for integrated solutions to manage stormwater runoff in the Gulf of Mexico. 
    more » « less
  3. Abstract

    Hurricane Harvey brought extreme levels of rainfall to the Houston, Texas, area over a 7‐day period in August 2017, resulting in catastrophic flooding that caused loss of human life and damage to personal property and public infrastructure. In the wake of this event, there has been interest in understanding the degree to which this event was unusual and estimating the probability of experiencing a similar event in other locations. Additionally, researchers have aimed to better understand the ways in which the sea surface temperature (SST) in the Gulf of Mexico (GoM) is associated with precipitation extremes in this region. This work addresses all of these issues through the development of a multivariate spatial extreme value model.

    Our analysis indicates that warmer GoM SSTs are associated with higher precipitation extremes in the western Gulf Coast region during hurricane season and that the precipitation totals observed during Hurricane Harvey are less unusual based on the warm GoM SST in 2017. As SSTs in the GoM are expected to steadily increase over the remainder of this century, this analysis suggests that western Gulf Coast locations may experience more severe precipitation extremes during hurricane season.

     
    more » « less
  4. Abstract

    To help determine whether planktonic eggs of fishes on the West Florida Shelf (WFS) are retained locally or exported elsewhere, we collected fish eggs by plankton net from 17 locations (stations) and identified them using DNA barcoding. We then entered the station coordinates into the West Florida Coastal Ocean Model (WFCOM) and simulated the trajectories of the passively drifting eggs over 2 weeks at three depths (surface, midwater, and near bottom). The results indicated there were two groups of trajectories: a nearshore group that tended to be retained and an offshore group that tended toward export and potential long‐distance dispersal. We also found evidence of a relationship between retention and higher fish‐egg abundance; nearshore stations were associated with higher fish‐egg abundances and higher retention. We suggest this is the result of (1) increased spawning in high‐retention areas, (2) increased drift convergence in high‐retention areas, or both processes acting together. Community analysis using SIMPROF indicated the presence of a depth‐related (retention‐related) difference in species assemblages. Fish‐egg species were also categorized as pelagics or non‐pelagics; there was no evidence of pelagic species being more likely to be exported.

     
    more » « less
  5. Campbell, Lisa (Ed.)
    Abstract Biomass and composition of the phytoplankton community were investigated in the deep-water Gulf of Mexico (GoM) at the edges of Loop Current anticyclonic eddies during May 2017 and May 2018. Using flow cytometry, high-performance liquid chromatography pigments and microscopy, we found euphotic zone integrated chlorophyll a of ~10 mg m−2 and autotrophic carbon ranging from 463 to 1268 mg m−2, dominated by picoplankton (<2 μm cells). Phytoplankton assemblages were similar to the mean composition at the Bermuda Atlantic Time-series Study site, but differed from the Hawaii Ocean Times-series site. GoM phytoplankton biomass was ~2-fold higher at the deep chlorophyll maximum (DCM) relative to the mixed layer (ML). Prochlorococcus and prymnesiophytes were the dominant taxa throughout the euphotic zone; however, other eukaryotic taxa had significant biomass in the DCM. Shallower DCMs were correlated with more prymnesiophytes and prasinophytes (Type 3) and reduced Prochlorococcus. These trends in ML and DCM taxonomic composition likely reflect relative nutrient supply—with ML populations relying on remineralized ammonium as a nitrogen source, and the taxonomically diverse DCM populations using more nitrate. These spatially separated phytoplankton communities represent different pathways for primary production, with a dominance of picoplankton in the ML and more nano- and microplankton at the DCM. 
    more » « less