skip to main content


Title: Leveraging Metal and Ligand Reactive Sites for One Pot Reactions: Ligand‐Centered Borenium Ions for Tandem Catalysis with Palladium
Abstract

Tandem catalysts that perform two different organic transformations in a single pot are highly desirable because they enable rapid and efficient assembly of simple organic building blocks into more complex molecules. Many examples of tandem catalysis rely on metal‐catalyzed reactions involving one or more metal complexes. Remarkably, despite surging interest in the development of chemically reactive (i. e., non‐innocent) ligands, there are few examples of metal complexes that leverage ligand‐centered reactivity to perform catalytic reactions in tandem with separate catalytic reactions at the metal. Here we report how multifunctional Pd complexes with triaminoborane‐derived diphosphorus ligands, called TBDPhos, appear to facilitate borenium‐catalyzed cycloaddition reactions at the ligand, and Pd‐catalyzed Stille and Suzuki cross‐coupling reactions at the metal. Both transformations can be accessed in one pot to afford rare examples of tandem catalysis using separate metal and ligand catalysis sites in a single complex.

 
more » « less
PAR ID:
10388068
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
28
Issue:
65
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mono‐N‐protected amino acids (MPAAs) are increasingly common ligands in Pd‐catalyzed C−H functionalization reactions. Previous studies have shown how these ligands accelerate catalytic turnover by facilitating the C−H activation step. Here, it is shown that MPAA ligands exhibit a second property commonly associated with ligand‐accelerated catalysis: the ability to support catalytic turnover at substoichiometric ligand‐to‐metal ratios. This catalytic role of the MPAA ligand is characterized in stoichiometric C−H activation and catalytic C−H functionalization reactions. Palladacycle formation with substrates bearing carboxylate and pyridine directing groups exhibit a 50–100‐fold increase in rate when only 0.05 equivalents of MPAA are present relative to PdII. These and other mechanistic data indicate that facile exchange between MPAAs and anionic ligands coordinated to PdIIenables a single MPAA to support C−H activation at multiple PdIIcenters.

     
    more » « less
  2. Abstract

    Mono‐N‐protected amino acids (MPAAs) are increasingly common ligands in Pd‐catalyzed C−H functionalization reactions. Previous studies have shown how these ligands accelerate catalytic turnover by facilitating the C−H activation step. Here, it is shown that MPAA ligands exhibit a second property commonly associated with ligand‐accelerated catalysis: the ability to support catalytic turnover at substoichiometric ligand‐to‐metal ratios. This catalytic role of the MPAA ligand is characterized in stoichiometric C−H activation and catalytic C−H functionalization reactions. Palladacycle formation with substrates bearing carboxylate and pyridine directing groups exhibit a 50–100‐fold increase in rate when only 0.05 equivalents of MPAA are present relative to PdII. These and other mechanistic data indicate that facile exchange between MPAAs and anionic ligands coordinated to PdIIenables a single MPAA to support C−H activation at multiple PdIIcenters.

     
    more » « less
  3. We describe the development of [(NHC)Pd(cinnamyl)Cl] complexes of ImPy (ImPy = imidazo[1,5- a ]pyridin-3-ylidene) as a versatile class of precatalysts for cross-coupling reactions. These precatalysts feature fast activation to monoligated Pd(0) with 1 : 1 Pd to ligand ratio in a rigid imidazo[1,5- a ]pyridin-3-ylidene template. Steric matching of the C5-substituent and N2-wingtip in the catalytic pocket of the catalyst framework led to the discovery of ImPyMesDipp as a highly reactive imidazo[1,5- a ]pyridin-3-ylidene ligand for Pd-catalyzed cross-coupling of nitroarenes by challenging C–NO 2 activation. Kinetic studies demonstrate fast activation and high reactivity of this class of well-defined ImPy–Pd catalysts. Structural studies provide full characteristics of this new class of imidazo[1,5- a ]pyridin-3-ylidene ligands. Computational studies establish electronic properties of sterically-restricted imidazo[1,5- a ]pyridin-3-ylidene ligands. Finally, a scalable synthesis of C5-substituted imidazo[1,5- a ]pyridin-3-ylidene ligands through Ni-catalyzed Kumada cross-coupling is disclosed. The method obviates chromatographic purification at any of the steps, resulting in a facile and modular access to ImPy ligands. We anticipate that well-defined [Pd–ImPy] complexes will find broad utility in organic synthesis and catalysis for activation of unreactive bonds. 
    more » « less
  4. Abstract

    Nature uses control of the secondary coordination sphere to facilitate an astounding variety of transformations. Similarly, synthetic chemists have found metal‐ligand cooperativity to be a powerful strategy for designing complexes that can mediate challenging reactivity. In particular, this strategy has been used to facilitate two electron reactions with first row transition metals that more typically engage in one electron redox processes. While NNN pincer ligands feature prominently in this area, examples which can potentially engage in both proton and electron transfer are less common. Dihydrazonopyrrole (DHP) ligands have been isolated in a variety of redox and protonation states when complexed to Ni. However, the redox‐state of this ligand scaffold is less obvious when complexed to metal centers with more accessible redox couples. Here, we synthesize a new series of Fe‐DHP complexes in two distinct oxidation states. Detailed characterization supports that the redox‐chemistry in this set is still primarily ligand based. Finally, these complexes exist as 5‐coordinate species with an open coordination site offering the possibility of enhanced reactivity.

     
    more » « less
  5. Palladium-catalyzed fluoroalkylations of aryl halides are valuable reactions for the synthesis of fluorinated, biologically active molecules. Reductive elimination from an intermediate Pd(aryl)(fluoroalkyl) complex is the step that forms the C(aryl)–C(fluoroalkyl) bond, and this step typically requires higher temperatures and proceeds with slower rates than the reductive elimination of nonfluorinated alkylarenes from the analogous Pd(aryl)(alkyl) complexes. The experimental rates of this step correlate poorly with common parameters, such as the steric property or the electron-withdrawing ability of the fluoroalkyl ligand, making the prediction of rates and the rational design of Pd-catalyzed fluoroalkylations difficult. Therefore, a systematic study of the features of fluoroalkyl ligands that affect the barrier to this key step, including steric properties, electron-withdrawing properties, and secondary interactions, is necessary for the future development of fluoroalkylation reactions that occur under milder conditions and that tolerate additional types of fluoroalkyl reagents. We report computational studies of the effect of the fluoroalkyl (RF) ligand on the barriers to reductive elimination from Pd(aryl)(RF) complexes (RF = CF2CN, CF2C(O)Me, etc.) containing the bidentate ligand di-tert-butyl(2-methoxyphenyl)phosphine (L). The computed Gibbs free-energy barriers to reductive elimination from these complexes suggest that fluoroalkylarenes should form quickly at room temperature for the fluoroalkyl ligands we studied, excluding RF = CF3, CF2Me, C2F5, CF2CFMe2, CF2Et, CF2iPr, or CF2tBu. Analyses of the transition-state structures by natural bond orbital (NBO) and independent gradient model (IGMH) approaches reveal that orbital interactions between the Pd center and a hydrogen atom or π-acid bonded to the α-carbon atom of the RF ligand stabilize the lowest-energy transition states of Pd(aryl)(RF) complexes. Comparisons between conformers of transition-state structures suggest that the magnitude of such stabilizations is 4.7–9.9 kcal/mol. In the absence of these secondary orbital interactions, a more electron-withdrawing fluoroalkyl ligand leads to a higher barrier to reductive elimination than a less electron-withdrawing fluoroalkyl ligand. Computations on the reductive elimination from complexes containing para-substituted aryl groups on palladium reveal that the barriers to reductive elimination from complexes containing more electron-rich aryl ligands tend to be lower than those to reductive elimination from complexes containing less electron-rich aryl ligands when the fluoroalkyl ligands of these complexes can engage in secondary orbital interactions with the metal center. However, the computed barriers to reductive elimination do not depend on the electronic properties of the aryl ligand when the fluoroalkyl ligands do not engage in secondary orbital interactions with the metal center. 
    more » « less