skip to main content


Title: Iron-Based Magnetic Nanosystems for Diagnostic Imaging and Drug Delivery: Towards Transformative Biomedical Applications
The advancement of biomedicine in a socioeconomically sustainable manner while achieving efficient patient-care is imperative to the health and well-being of society. Magnetic systems consisting of iron based nanosized components have gained prominence among researchers in a multitude of biomedical applications. This review focuses on recent trends in the areas of diagnostic imaging and drug delivery that have benefited from iron-incorporated nanosystems, especially in cancer treatment, diagnosis and wound care applications. Discussion on imaging will emphasise on developments in MRI technology and hyperthermia based diagnosis, while advanced material synthesis and targeted, triggered transport will be the focus for drug delivery. Insights onto the challenges in transforming these technologies into day-to-day applications will also be explored with perceptions onto potential for patient-centred healthcare.  more » « less
Award ID(s):
2129617 2032751 2129352
NSF-PAR ID:
10388083
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Pharmaceutics
Volume:
14
Issue:
10
ISSN:
1999-4923
Page Range / eLocation ID:
2093
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reddy, S. ; Winter, J.S. ; Padmanabhan, S. (Ed.)
    AI applications are poised to transform health care, revolutionizing benefits for individuals, communities, and health-care systems. As the articles in this special issue aptly illustrate, AI innovations in healthcare are maturing from early success in medical imaging and robotic process automation, promising a broad range of new applications. This is evidenced by the rapid deployment of AI to address critical challenges related to the COVID-19 pandemic, including disease diagnosis and monitoring, drug discovery, and vaccine development. At the heart of these innovations is the health data required for deep learning applications. Rapid accumulation of data, along with improved data quality, data sharing, and standardization, enable development of deep learning algorithms in many healthcare applications. One of the great challenges for healthcare AI is effective governance of these data—ensuring thoughtful aggregation and appropriate access to fuel innovation and improve patient outcomes and healthcare system efficiency while protecting the privacy and security of data subjects. Yet the literature on data governance has rarely looked beyond important pragmatic issues related to privacy and security. Less consideration has been given to unexpected or undesirable outcomes of healthcare in AI, such as clinician deskilling, algorithmic bias, the “regulatory vacuum”, and lack of public engagement. Amidst growing calls for ethical governance of algorithms, Reddy et al. developed a governance model for AI in healthcare delivery, focusing on principles of fairness, accountability, and transparency (FAT), and trustworthiness, and calling for wider discussion. Winter and Davidson emphasize the need to identify underlying values of healthcare data and use, noting the many competing interests and goals for use of health data—such as healthcare system efficiency and reform, patient and community health, intellectual property development, and monetization. Beyond the important considerations of privacy and security, governance must consider who will benefit from healthcare AI, and who will not. Whose values drive health AI innovation and use? How can we ensure that innovations are not limited to the wealthiest individuals or nations? As large technology companies begin to partner with health care systems, and as personally generated health data (PGHD) (e.g., fitness trackers, continuous glucose monitors, health information searches on the Internet) proliferate, who has oversight of these complex technical systems, which are essentially a black box? To tackle these complex and important issues, it is important to acknowledge that we have entered a new technical, organizational, and policy environment due to linked data, big data analytics, and AI. Data governance is no longer the responsibility of a single organization. Rather, multiple networked entities play a role and responsibilities may be blurred. This also raises many concerns related to data localization and jurisdiction—who is responsible for data governance? In this emerging environment, data may no longer be effectively governed through traditional policy models or instruments. 
    more » « less
  2. Labeled protein-based biomaterials have become popular for various biomedical applications such as tissue-engineered, therapeutic, and diagnostic scaffolds. Labeling of protein biomaterials, including with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles, has enabled a wide variety of imaging and therapeutic techniques. These USPIO-based biomaterials are widely studied in magnetic resonance imaging (MRI), thermotherapy, and magnetically-driven drug delivery, which provide a method for direct and non-invasive monitoring of implants or drug delivery agents. Where most developments have been made using polymers or collagen hydrogels, shown here is the use of a rationally designed protein as the building block for a meso-scale fiber. While USPIOs have been chemically conjugated to antibodies, glycoproteins, and tissue-engineered scaffolds for targeting or improved biocompatibility and stability, these constructs have predominantly served as diagnostic agents and often involve harsh conditions for USPIO synthesis. Here, we present an engineered protein–iron oxide hybrid material comprised of an azide-functionalized coiled-coil protein with small molecule binding capacity conjugated via bioorthogonal azide–alkyne cycloaddition to an alkyne-bearing iron oxide templating peptide, CMms6, for USPIO biomineralization under mild conditions. The coiled-coil protein, dubbed Q, has been previously shown to form nanofibers and, upon small molecule binding, further assembles into mesofibers via encapsulation and aggregation. The resulting hybrid material is capable of doxorubicin encapsulation as well as sensitive -weighted MRI darkening for strong imaging capability that is uniquely derived from a coiled-coil protein. 
    more » « less
  3. Abstract

    Sepsis is responsible for the highest economic and mortality burden in critical care settings around the world, prompting the World Health Organization in 2018 to designate it as a global health priority. Despite its high universal prevalence and mortality rate, a disproportionately low amount of sponsored research funding is directed toward diagnosis and treatment of sepsis, when early treatment has been shown to significantly improve survival. Additionally, current technologies and methods are inadequate to provide an accurate and timely diagnosis of septic patients in multiple clinical environments. For improved patient outcomes, a comprehensive immunological evaluation is critical which is comprised of both traditional testing and quantifying recently proposed biomarkers for sepsis. There is an urgent need to develop novel point‐of‐care, low‐cost systems which can accurately stratify patients. These point‐of‐critical‐care sensors should adopt a multiplexed approach utilizing multimodal sensing for heterogenous biomarker detection. For effective multiplexing, the sensors must satisfy criteria including rapid sample to result delivery, low sample volumes for clinical sample sparring, and reduced costs per test. A compendium of currently developed multiplexed micro and nano (M/N)‐based diagnostic technologies for potential applications toward sepsis are presented. We have also explored the various biomarkers targeted for sepsis including immune cell morphology changes, circulating proteins, small molecules, and presence of infectious pathogens. An overview of different M/N detection mechanisms are also provided, along with recent advances in related nanotechnologies which have shown improved patient outcomes and perspectives on what future successful technologies may encompass.

    This article is categorized under:

    Diagnostic Tools > Biosensing

     
    more » « less
  4. Abstract

    Therapeutic antibodies, due to their high affinity and specificity toward their biological targets, may demonstrate reduced harmful side effects compared with traditional drug moieties. While most of the as‐yet clinically approved antibody therapeutics have targeted extracellular or membrane‐bound domains, the ability to target intracellular antigens with antibodies opens up tremendous opportunities for imaging, diagnosis, and therapeutic applications. Generally, delivery concerns have limited the ability to target intracellular antigens, as many antibodies cannot easily cross the cell membrane due to their size and surface chemistry. Delivery platforms have been explored to address this issue, including physical methods, fusion protein/peptide techniques, and synthetic carrier‐based systems. This review summarizes the progress of carrier‐based intracellular antibody delivery systems employing synthetic lipids, polymers, and inorganic nanomaterials. Antibodies targeting various epitopes have been loaded through adsorption, conjugation, or physical encapsulation strategies. Successful intracellular deliveries have been demonstrated largely through fluorescence imaging using dye‐labeled antibody cargos. Specific synthetic delivery platforms have great potential for ex vivo and in vivo therapeutic applications. Challenges and opportunities are further discussed for material scientists to explore in this research area.

     
    more » « less
  5. Background The surge of telemedicine use during the early stages of the COVID-19 pandemic has been well documented. However, scarce evidence considers the use of telemedicine in the subsequent period. Objective This study aims to evaluate use patterns of video-based telemedicine visits for ambulatory care and urgent care provision over the course of recurring pandemic waves in 1 large health system in New York City (NYC) and what this means for health care delivery. Methods Retrospective electronic health record (EHR) data of patients from January 1, 2020, to February 28, 2022, were used to longitudinally track and analyze telemedicine and in-person visit volumes across ambulatory care specialties and urgent care, as well as compare them to a prepandemic baseline (June-November 2019). Diagnosis codes to differentiate suspected COVID-19 visits from non–COVID-19 visits, as well as evaluating COVID-19–based telemedicine use over time, were compared to the total number of COVID-19–positive cases in the same geographic region (city level). The time series data were segmented based on change-point analysis, and variances in visit trends were compared between the segments. Results The emergence of COVID-19 prompted an early increase in the number of telemedicine visits across the urgent care and ambulatory care settings. This use continued throughout the pandemic at a much higher level than the prepandemic baseline for both COVID-19 and non–COVID-19 suspected visits, despite the fluctuation in COVID-19 cases throughout the pandemic and the resumption of in-person clinical services. The use of telemedicine-based urgent care services for COVID-19 suspected visits showed more variance in response to each pandemic wave, but telemedicine visits for ambulatory care have remained relatively steady after the initial crisis period. During the Omicron wave, the use of all visit types, including in-person activities, decreased. Patients between 25 and 34 years of age were the largest users of telemedicine-based urgent care. Patient satisfaction with telemedicine-based urgent care remained high despite the rapid scaling of services to meet increased demand. Conclusions The trend of the increased use of telemedicine as a means of health care delivery relative to the pre–COVID-19 baseline has been maintained throughout the later pandemic periods despite fluctuating COVID-19 cases and the resumption of in-person care delivery. Overall satisfaction with telemedicine-based care is also high. The trends in telemedicine use suggest that telemedicine-based health care delivery has become a mainstream and sustained supplement to in-person-based ambulatory care, particularly for younger patients, for both urgent and nonurgent care needs. These findings have implications for the health care delivery system, including practice leaders, insurers, and policymakers. Further investigation is needed to evaluate telemedicine adoption by key demographics, identify ongoing barriers to adoption, and explore the impacts of sustained use of telemedicine on health care outcomes and experience. 
    more » « less