- Award ID(s):
- 1816388
- PAR ID:
- 10388130
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 922
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 230
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Compact steep spectrum (CSS) radio sources are active galactic nuclei (AGN) that have radio jets propagating only on galactic scales, defined as having projected linear size (LS) of up to 20 kpc. CSS sources are generally hosted by massive early-type galaxies with little ongoing star formation; however, a small fraction are known to have enhanced star formation. Using archival data from the Faint Images of the Radio Sky at Twenty cm survey, the Very Large Array Sky Survey, and the Sloan Digital Sky Survey, we identify a volume-limited sample of 166 CSS sources at z < 0.2 with L 1.4 GHz > 10 24 W Hz −1 . Comparing the star formation rates and linear sizes of these CSS sources, we find that the ≈14% of CSS sources with specific star formation rates above 0.01 Gyr −1 all have LS < 10 kpc. We discuss the possible mechanisms driving this result, concluding that it is likely the excess star formation in these sources occurred in multiple bursts and ceased prior to the AGN jet being triggered.more » « less
-
Abstract We present the analysis of ∼100 pc scale compact radio continuum sources detected in 63 local (ultra)luminous infrared galaxies (U/LIRGs;
L IR≥ 1011L ⊙), using FWHM ≲ 0.″1–0.″2 resolution 15 and 33 GHz observations with the Karl G. Jansky Very Large Array. We identify a total of 133 compact radio sources with effective radii of 8–170 pc, which are classified into four main categories—“AGN” (active galactic nuclei), “AGN/SBnuc” (AGN-starburst composite nucleus), “SBnuc” (starburst nucleus), and “SF” (star-forming clumps)—based on ancillary data sets and the literature. We find that “AGN” and “AGN/SBnuc” more frequently occur in late-stage mergers and have up to 3 dex higher 33 GHz luminosities and surface densities compared with “SBnuc” and “SF,” which may be attributed to extreme nuclear starburst and/or AGN activity in the former. Star formation rates (SFRs) and surface densities (ΣSFR) are measured for “SF” and “SBnuc” using both the total 33 GHz continuum emission (SFR ∼ 0.14–13M ⊙yr−1, ΣSFR∼ 13–1600M ⊙yr−1kpc−2) and the thermal free–free emission from Hii regions (median SFRth∼ 0.4M ⊙yr−1, yr−1kpc−2). These values are 1–2 dex higher than those measured for similar-sized clumps in nearby normal (non-U/LIRGs). The latter also have a much flatter median 15–33 GHz spectral index (∼−0.08) compared with “SBnuc” and “SF” (∼−0.46), which may reflect higher nonthermal contribution from supernovae and/or interstellar medium densities in local U/LIRGs that directly result from and/or lead to their extreme star-forming activities on 100 pc scales. -
ABSTRACT ‘Extremely red quasars’ (ERQs) are a non-radio-selected, intrinsically luminous population of quasars at cosmic noon selected by their extremely red colour from rest-frame UV to mid-IR. ERQs are uniquely associated with exceptionally broad and blueshifted [O iii] $\lambda$5007 emission reaching speeds $\gt $6000 km s$^{-1}$. We obtained adaptive optics integral-field spectroscopic observations using Keck/OSIRIS and Gemini/NIFS of a sample of 10 ERQs with bolometric luminosities (10$^{47.0}$–10$^{47.9}$) erg s$^{-1}$ at $z\sim$ (2.3–3.0). The goal is to measure the sizes and spatially resolved kinematics of the [O iii]-emitting regions. We study the surface brightness maps and aperture-extracted spectra and model the point-spread functions. We identify signs of merger activities in the continuum emissions. We identify physically distinct [O iii] kinematic components that are bimodal and respectively trace ERQ-driven outflows of velocity dispersion $\gtrsim$250 km s$^{-1}$ and dynamically quiescent interstellar media. We find that the ERQ-driven ionized outflows are typically at $\sim$1 kpc scales whereas the quiescent ionized gas extend to a few kpc. Compared to normal quasars the extremely fast ERQ-driven [O iii] outflows tend to be more compact, supporting the notion that ERQs are in a young stage of quasar/galaxy evolution and represent unique physical conditions beyond orientation differences with normal quasar populations. The kinematically quiescent [O iii] emissions in ERQs tend to be spatially resolved but less extended than in normal quasars, which can be explained by global and patchy dust obscuration. The hint of ionization cones suggests some of the obscuration can be partially explained by a patchy torus.
-
Abstract Feedback likely plays a crucial role in resolving discrepancies between observations and theoretical predictions of dwarf galaxy properties. Stellar feedback was once believed to be sufficient to explain these discrepancies, but it has thus far failed to fully reconcile theory and observations. The recent discovery of energetic galaxy-wide outflows in dwarf galaxies hosting active galactic nuclei (AGNs) suggests that AGN feedback may have a larger role in the evolution of dwarf galaxies than previously suspected. In order to assess the relative importance of stellar versus AGN feedback in these galaxies, we perform a detailed Keck/KCWI optical integral field spectroscopic study of a sample of low-redshift star-forming (SF) dwarf galaxies that show outflows in ionized gas in their Sloan Digital Sky Survey spectra. We characterize the outflows and compare them to observations of AGN-driven outflows in dwarfs. We find that SF dwarfs have outflow components that have comparable widths (
W 80) to those of outflows in AGN dwarfs, but are much less blueshifted, indicating that SF dwarfs have significantly slower outflows than their AGN counterparts. Outflows in SF dwarfs are spatially resolved and significantly more extended than those in AGN dwarfs. The mass-loss, momentum, and energy rates of star-formation-driven outflows are much lower than those of AGN-driven outflows. Our results indicate that AGN feedback in the form of gas outflows may play an important role in dwarf galaxies and should be considered along with SF feedback in models of dwarf galaxy evolution. -
Abstract Post-merger galaxies are unique laboratories to study the triggering and interplay of star formation and active galactic nucleus (AGN) activity. Combining new, high-resolution Jansky Very Large Array (VLA) observations with archival radio surveys, we have examined the radio properties of 28 spheroidal post-merger galaxies. We detect 18 radio sources in our post-merger sample and find a general lack of extended emission at (sub)kiloparsec scales, indicating the prevalence of compact, nuclear radio emission in these post-merger galaxies, with the majority (16/18; 89%) characterized as low luminosity. Using multiwavelength data, we determine the origin of the radio emission, discovering 15 new radio AGNs and three radio sources likely associated with star-forming (SF) processes. Among the radio AGNs, almost all are low luminosity (13/15; 87%), inconsistent with a relativistic jet origin. We discover a new dual AGN (DAGN) candidate, J1511+0417, and investigate the radio properties of the DAGN candidate J0843+3549. Five of these radio AGNs are hosted by a SF or SF-AGN composite emission-line galaxy, suggesting that radio AGN activity may be present during periods of SF activity in post-mergers. The low-power jets and compact morphologies of these radio AGNs also point to a scenario in which AGN feedback may be efficient in this sample of post-mergers. Lastly, we present simulated, multifrequency observations of the 15 radio AGNs with the Very Long Baseline Array and the very-long-baseline interferometry capabilities of the Next-Generation VLA to assess the feasibility of these instruments in searches for supermassive black hole binaries.