skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: The dynamics of coherent structures in a turbulent wake past a sphere at Re= 3700
The turbulent wake flow past a sphere at ReD= 3700 is investigated via Direct Numerical Simulation (DNS). The characteristic motions in the wake flow, such as vortex shedding and bubble pumping are identified by the probes placed in the near wake with a dominating frequency of St= fu∞/D= 0.22 and 0.004, respectively. The modal analysis is conducted in the wake area using Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD). The vortex shedding and bubble pumping motions are also captured by the modal analysis. The results from POD and DMD show comparable patterns of both characteristic motions. For the bubble pumping motion, the dominating frequency of the corresponding POD mode is St= 0.004, while the DMD mode that is directly related to the separation bubble has the frequency of St= 0.009.  more » « less
Award ID(s):
1944568 1707075
PAR ID:
10388151
Author(s) / Creator(s):
;
Publisher / Repository:
Twelfth International Symposium on Turbulence and Shear Flow Phenomena
Date Published:
Journal Name:
Turbulence and shear flow phenomena
Volume:
2022
ISSN:
2642-0554
Page Range / eLocation ID:
246
Format(s):
Medium: X
Location:
Osaka, Japan
Sponsoring Org:
National Science Foundation
More Like this
  1. The wake flow past an axisymmetric body of revolution at a diameter-based Reynolds number$Re=u_{\infty }D/\nu =5000$is investigated via a direct numerical simulation. The study is focused on identification of coherent vortical motions and the dominant frequencies in this flow. Three dominant coherent motions are identified in the wake: the vortex shedding motion with the frequency of$St=fD/u_{\infty }=0.27$, the bubble pumping motion with$St=0.02$, and the very-low-frequency (VLF) motion originated in the very near wake of the body with the frequency$St=0.002$$0.005$. The vortex shedding pattern is demonstrated to follow a reflectional symmetry breaking mode, whereas the vortex loops are shed alternatingly from each side of the vortex shedding plane, but are subsequently twisted and tangled, giving the resulting wake structure a helical spiraling pattern. The bubble pumping motion is confined to the recirculation region and is a result of a Görtler instability. The VLF motion is related to a stochastic destabilisation of a steady symmetric mode in the near wake and manifests itself as a slow, precessional motion of the wake barycentre. The VLF mode with$St=0.005$is also detectable in the intermediate wake and may be associated with a low-frequency radial flapping of the shear layer.

     
    more » « less
  2. Vortex induced vibration (VIV) experienced during flow past a cylinder can reduce equipment performance and in some cases lead to failure. Previous studies have shown that the injection of bubbles in the flow over a cylinder typically leads to a monotonic increase in shedding frequency with void fraction, however, a satisfactory explanation for this phenomenon has not been proposed. Unexplained scatter in the data exists, including that the increase in shedding frequency is not universal. More research is needed to characterize the influence of bubbles on the wake structure, and subsequent shift in shedding frequency. To this aim, the effect of bubbles on the structure of the wake and VIV was examined over two values of Reynolds number, 𝑅𝑒𝐷 = 100, 000 and 160,000. Time-resolved particle image velocimetry (TR-PIV), proper orthogonal decomposition (POD) and spectral proper orthogonal decomposition (SPOD) of the wake structures, vibration of the cylinder, and bubble image velocimetry (BIV) were used to assess the flow topology changes under the influence of gas injection. Using SPOD/POD analysis in the near wake, it was found that the primary Karman shedding frequency decreased with the injection of gas, from a Strouhal number of St = 0.2 to St = 0.17−0.18; the width of the spectral peak was found to increase with void fraction. Notably, the vibration of the cylinder at the primary Karman shedding frequency was suppressed following the injection of gas, even at spanwiseaveraged volumetric qualities below 0.01%. This suppression occurred regardless of if gas was concentrated locally near the centerline of the channel, or along the span. BIV data suggests that gas accumulation in the near wake, driven by the high velocity vertical motion of gas, serves to uncouple the cylinder motion from the formation of the vortex street downstream while promoting faster wake recovery. 
    more » « less
  3. We present experiments on oscillating hydrofoils undergoing combined heaving and pitching motions, paying particular attention to connections between propulsive efficiency and coherent wake features extracted using modal analysis. Time-averaged forces and particle image velocimetry measurements of the flow field downstream of the foil are presented for a Reynolds number of Re=11000 and Strouhal numbers in the range St=0.16--0.35. These conditions produce 2S and 2P wake patterns, as well as a near-momentumless wake structure. A triple decomposition using the optimized dynamic mode decomposition method is employed to identify dominant modal components (or coherent structures) in the wake. These structures can be connected to wake instabilities predicted using spatial stability analyses. Examining the modal components of the wake provides insightful explanations into the transition from drag to thrust production, and conditions that lead to peak propulsive efficiency. In particular, we find modes that correspond to the primary vortex development in the wakes. Other modal components capture elements of bluff body shedding at Strouhal numbers below the optimum for peak propulsive efficiency and characteristics of separation for Strouhal numbers higher than the optimum. 
    more » « less
  4. We present experiments on oscillating hydrofoils undergoing combined heaving and pitching motions, paying particular attention to connections between propulsive efficiency and coherent wake features extracted using modal analysis. Time-averaged forces and particle image velocimetry measurements of the flow field downstream of the foil are presented for a Reynolds number of Re=11000 and Strouhal numbers in the range St=0.16–0.35 . These conditions produce 2S and 2P wake patterns, as well as a near-momentumless wake structure. A triple decomposition using the optimized dynamic mode decomposition method is employed to identify dominant modal components (or coherent structures) in the wake. These structures can be connected to wake instabilities predicted using spatial stability analyses. Examining the modal components of the wake provides insightful explanations into the transition from drag to thrust production, and conditions that lead to peak propulsive efficiency. In particular, we find modes that correspond to the primary vortex development in the wakes. Other modal components capture elements of bluff body shedding at Strouhal numbers below the optimum for peak propulsive efficiency and characteristics of separation for Strouhal numbers higher than the optimum. 
    more » « less
  5. Abstract

    Uvula‐induced snoring and associated obstructive sleep apnea is a complex phenomenon characterized by vibrating structures and highly transient vortex dynamics. This study aimed to extract signature features of uvula wake flows of different pathological origins and develop a linear reduced‐order surrogate model for flow control. Six airway models were developed with two uvula kinematics and three pharynx constriction levels. A direct numerical simulation (DNS) flow solver based on the immersed boundary method was utilized to resolve the wake flows induced by the flapping uvula. Key spatial and temporal responses of the flow to uvula kinematics and pharynx constriction were investigated using continuous wavelet transform (CWT), proper orthogonal decomposition (POD), and dynamic mode decomposition (DMD). Results showed highly complex patterns in flow topologies. CWT analysis revealed multiscale correlations in both time and space between the flapping uvular and wake flows. POD analysis successfully separated the flows among the six models by projecting the datasets in the vector space spanned by the first three eigenmodes. Perceivable differences were also captured in the time evolution of the DMD modes among the six models. A linear reduced‐order surrogate model was constructed from the predominant eigenmodes obtained from the DMD analysis and predicted vortex patterns from this surrogate model agreed well with the corresponding DNS simulations. The computational and analytical platform presented in this study could bring a variety of applications in breathing‐related disorders and beyond. The computational efficiency of surrogate modeling makes it well suited for flow control, forecasting, and uncertainty analyses.

     
    more » « less