skip to main content


Title: The dynamics of coherent structures in a turbulent wake past a sphere at Re= 3700
The turbulent wake flow past a sphere at ReD= 3700 is investigated via Direct Numerical Simulation (DNS). The characteristic motions in the wake flow, such as vortex shedding and bubble pumping are identified by the probes placed in the near wake with a dominating frequency of St= fu∞/D= 0.22 and 0.004, respectively. The modal analysis is conducted in the wake area using Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD). The vortex shedding and bubble pumping motions are also captured by the modal analysis. The results from POD and DMD show comparable patterns of both characteristic motions. For the bubble pumping motion, the dominating frequency of the corresponding POD mode is St= 0.004, while the DMD mode that is directly related to the separation bubble has the frequency of St= 0.009.  more » « less
Award ID(s):
1944568 1707075
NSF-PAR ID:
10388151
Author(s) / Creator(s):
;
Publisher / Repository:
Twelfth International Symposium on Turbulence and Shear Flow Phenomena
Date Published:
Journal Name:
Turbulence and shear flow phenomena
Volume:
2022
ISSN:
2642-0554
Page Range / eLocation ID:
246
Format(s):
Medium: X
Location:
Osaka, Japan
Sponsoring Org:
National Science Foundation
More Like this
  1. The wake flow past an axisymmetric body of revolution at a diameter-based Reynolds number$Re=u_{\infty }D/\nu =5000$is investigated via a direct numerical simulation. The study is focused on identification of coherent vortical motions and the dominant frequencies in this flow. Three dominant coherent motions are identified in the wake: the vortex shedding motion with the frequency of$St=fD/u_{\infty }=0.27$, the bubble pumping motion with$St=0.02$, and the very-low-frequency (VLF) motion originated in the very near wake of the body with the frequency$St=0.002$$0.005$. The vortex shedding pattern is demonstrated to follow a reflectional symmetry breaking mode, whereas the vortex loops are shed alternatingly from each side of the vortex shedding plane, but are subsequently twisted and tangled, giving the resulting wake structure a helical spiraling pattern. The bubble pumping motion is confined to the recirculation region and is a result of a Görtler instability. The VLF motion is related to a stochastic destabilisation of a steady symmetric mode in the near wake and manifests itself as a slow, precessional motion of the wake barycentre. The VLF mode with$St=0.005$is also detectable in the intermediate wake and may be associated with a low-frequency radial flapping of the shear layer.

     
    more » « less
  2. Abstract

    Uvula‐induced snoring and associated obstructive sleep apnea is a complex phenomenon characterized by vibrating structures and highly transient vortex dynamics. This study aimed to extract signature features of uvula wake flows of different pathological origins and develop a linear reduced‐order surrogate model for flow control. Six airway models were developed with two uvula kinematics and three pharynx constriction levels. A direct numerical simulation (DNS) flow solver based on the immersed boundary method was utilized to resolve the wake flows induced by the flapping uvula. Key spatial and temporal responses of the flow to uvula kinematics and pharynx constriction were investigated using continuous wavelet transform (CWT), proper orthogonal decomposition (POD), and dynamic mode decomposition (DMD). Results showed highly complex patterns in flow topologies. CWT analysis revealed multiscale correlations in both time and space between the flapping uvular and wake flows. POD analysis successfully separated the flows among the six models by projecting the datasets in the vector space spanned by the first three eigenmodes. Perceivable differences were also captured in the time evolution of the DMD modes among the six models. A linear reduced‐order surrogate model was constructed from the predominant eigenmodes obtained from the DMD analysis and predicted vortex patterns from this surrogate model agreed well with the corresponding DNS simulations. The computational and analytical platform presented in this study could bring a variety of applications in breathing‐related disorders and beyond. The computational efficiency of surrogate modeling makes it well suited for flow control, forecasting, and uncertainty analyses.

     
    more » « less
  3. Turbulent wakes are often characterized by dominant coherent structures over disparate scales. Dynamics of their behaviour can be attributed to interscale energy dynamics and triadic interactions. We develop a methodology to quantify the dynamics of kinetic energy of specific scales. Coherent motions are characterized by the triple decomposition and used to define mean, coherent and random velocity. Specific scales of coherent structures are identified through dynamic mode decomposition, whereby the total coherent velocity is separated into a set of velocities classified by frequency. The coherent kinetic energy of a specific scale is defined by a frequency triad of scale-specific velocities. Equations for the balance of scale-specific coherent kinetic energy are derived to interpret interscale dynamics. The methodology is demonstrated on three wake flows: (i)${Re}=175$flow over a cylinder; (ii) a direct numerical simulation of${Re}=3900$flow over a cylinder; and (iii) a large-eddy simulation of a utility-scale wind turbine. The cylinder wake cases show that energy transfer starts with vortex shedding and redistributes energy through resonance of higher harmonics. The scale-specific coherent kinetic energy balance quantifies the distribution of transport and transfer among coherent, mean and random scales. The coherent kinetic energy in the rotor scales and the hub vortex scale in the wind turbine interact to produce new scales. The analysis reveals that vortices at the blade root interact with the hub vortex formed behind the nacelle, which has implications for the proliferation of scales in the downwind near wake.

     
    more » « less
  4. Modal analysis on micro-vortex generator (MVG)-controlled supersonic flow at different Mach numbers is performed in this paper. The purpose of this investigation is to clarify the different properties of streamwise and ring-like vortical modes, and the effects of different Mach numbers on these modes, to further understand the vortical structures as they travel from MVG down to the shock wave/boundary-layer interaction (SWBLI) region. To this end, a high order and high resolution large eddy simulation (LES) was carried out, which identified the vortical structures behind the MVG and in the shock wave/boundary-layer interaction (SWBLI) region in the supersonic ramp flow with flow speeds of three different Mach numbers 1.5, 2.0, and 2.5. The proper orthogonal decomposition (POD) then was adopted to investigate the modes of the fluctuation flow field. It emerged that the streamwise and ring-like vortical modes were disparate in energy distribution, structural order, frequency and amplitude. Furthermore, it showed that as the Mach number increased, the energy of the streamwise modes increased while the opposite was true for ring-like modes; and the streamwise modal structures were altered more significantly than the ring-like modes, and the frequency of each mode scarcely varied. It was also found that the streamwise vortices absorbed energy from the ring-like vortices while they traveled from the MVG down to the SWBLI region, but the dominant frequency of each mode rarely changed during this process. 
    more » « less
  5. The presence of large-scale coherent structures can significantly impact the dynamics of a turbulent flow field and the behaviour of a flame stabilized in that flow. The goal of this study is to analyse how increasing free-stream turbulence can change the response of the flow to longitudinal acoustic excitation of varying amplitudes. We study the flow in the wake of a cylindrical bluff body at both non-reacting and reacting conditions, as the presence of a flame can significantly alter the global stability of the flow. The frequency of longitudinal acoustic excitation is set to match the natural frequency of anti-symmetric vortex shedding for this configuration and we vary the free-stream turbulence using perforated plates upstream of the bluff body. The results show that varying the level of free-stream turbulence can influence not only the amplitude of the coherent flow response, but also the symmetry of vortex shedding in the presence of longitudinal acoustic excitation. Increasing the turbulence intensity can fundamentally change the structure of the time-averaged flow and can directly impact the coherent flow response in two ways. First, increasing turbulence intensity can enhance the amplitude of the natural anti-symmetric vortex shedding mode in the wake. Second, increasing turbulence intensity weakens the symmetric response of the flow to the longitudinal acoustic excitation. In the non-reacting and reacting conditions, both symmetric and anti-symmetric modes are present and are characterized using a spectral proper orthogonal decomposition. We see evidence of interaction between the symmetric and anti-symmetric modes, which leads to an interference pattern in the coherent vorticity response in the shear layers. We conclude by presenting a conceptual model for the influence that turbulence has on these flows. 
    more » « less