skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Breeding for Higher Yields of Wheat and Rice through Modifying Nitrogen Metabolism
Wheat and rice produce nutritious grains that provide 32% of the protein in the human diet globally. Here, we examine how genetic modifications to improve assimilation of the inorganic nitrogen forms ammonium and nitrate into protein influence grain yield of these crops. Successful breeding for modified nitrogen metabolism has focused on genes that coordinate nitrogen and carbon metabolism, including those that regulate tillering, heading date, and ammonium assimilation. Gaps in our current understanding include (1) species differences among candidate genes in nitrogen metabolism pathways, (2) the extent to which relative abundance of these nitrogen forms across natural soil environments shape crop responses, and (3) natural variation and genetic architecture of nitrogen-mediated yield improvement. Despite extensive research on the genetics of nitrogen metabolism since the rise of synthetic fertilizers, only a few projects targeting nitrogen pathways have resulted in development of cultivars with higher yields. To continue improving grain yield and quality, breeding strategies need to focus concurrently on both carbon and nitrogen assimilation and consider manipulating genes with smaller effects or that underlie regulatory networks as well as genes directly associated with nitrogen metabolism.  more » « less
Award ID(s):
1655810
PAR ID:
10388210
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Plants
Volume:
12
Issue:
1
ISSN:
2223-7747
Page Range / eLocation ID:
85
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Improving drought resistance in crops is imperative under the prevailing erratic rainfall patterns. Drought affects the growth and yield of most modern rice varieties. Recent breeding efforts aim to incorporate drought resistance traits in rice varieties that can be suitable under alternative irrigation schemes, such as in a (semi)aerobic system, as row (furrow-irrigated) rice. The identification of quantitative trait loci (QTLs) controlling grain yield, the most important trait with high selection efficiency, can lead to the identification of markers to facilitate marker-assisted breeding of drought-resistant rice. Here, we report grain yield QTLs under greenhouse drought using an F2:3 population derived from Cocodrie (drought sensitive) × Nagina 22 (N22) (drought tolerant). Eight QTLs were identified for yield traits under drought. Grain yield QTL under drought on chromosome 1 (phenotypic variance explained (PVE) = 11.15%) co-localized with the only QTL for panicle number (PVE = 37.7%). The drought-tolerant parent N22 contributed the favorable alleles for all QTLs except qGN3.2 and qGN5.1 for grain number per panicle. Stress-responsive transcription factors, such as ethylene response factor, WD40 domain protein, zinc finger protein, and genes involved in lipid/sugar metabolism were linked to the QTLs, suggesting their possible role in drought tolerance mechanism of N22 in the background of Cocodrie, contributing to higher yield under drought. 
    more » « less
  2. Abstract Synechococcus are the most abundant cyanobacteria in high latitude regions and are responsible for an estimated 17% of annual marine net primary productivity. Despite their biogeochemical importance, Synechococcus populations have been unevenly sampled across the ocean, with most studies focused on low-latitude strains. In particular, the near absence of Synechococcus genomes from high-latitude, High Nutrient Low Chlorophyll (HNLC) regions leaves a gap in our knowledge of picocyanobacterial adaptations to iron limitation and their influence on carbon, nitrogen, and iron cycles. We examined Synechococcus populations from the subarctic North Pacific, a well-characterized HNLC region, with quantitative metagenomics. Assembly with short and long reads produced two near complete Synechococcus metagenome-assembled genomes (MAGs). Quantitative metagenome-derived abundances of these populations matched well with flow cytometry counts, and the Synechococcus MAGs were estimated to comprise >99% of the Synechococcus at Station P. Whereas the Station P Synechococcus MAGs contained multiple genes for adaptation to iron limitation, both genomes lacked genes for uptake and assimilation of nitrate and nitrite, suggesting a dependence on ammonium, urea, and other forms of recycled nitrogen leading to reduced iron requirements. A global analysis of Synechococcus nitrate reductase abundance in the TARA Oceans dataset found nitrate assimilation genes are also lower in other HNLC regions. We propose that nitrate and nitrite assimilation gene loss in Synechococcus may represent an adaptation to severe iron limitation in high-latitude regions where ammonium availability is higher. Our findings have implications for models that quantify the contribution of cyanobacteria to primary production and subsequent carbon export. 
    more » « less
  3. null (Ed.)
    Haloferax volcanii, a well-developed model archaeon for genomic, transcriptomic, and proteomic analyses, can grow on a defined medium of abundant and intermediate levels of fixed nitrogen. Here we report a global profiling of gene expression of H. volcanii grown on ammonium as an abundant source of fixed nitrogen compared to l-alanine, the latter of which exemplifies an intermediate source of nitrogen that can be obtained from dead cells in natural habitats. By comparing the two growth conditions, 30 genes were found to be differentially expressed, including 16 genes associated with amino acid metabolism and transport. The gene expression profiles contributed to mapping ammonium and l-alanine usage with respect to transporters and metabolic pathways. In addition, conserved DNA motifs were identified in the putative promoter regions and transcription factors were found to be in synteny with the differentially expressed genes, leading us to propose regulons of transcriptionally co-regulated operons. This study provides insight to how H. volcanii responds to and utilizes intermediate vs. abundant sources of fixed nitrogen for growth, with implications for conserved functions in related halophilic archaea. 
    more » « less
  4. Abstract Nostoc cyanobacteria are among the few organisms capable of fixing both carbon and nitrogen. These metabolic features are essential for the cyanolichen symbiosis, where Nostoc supplies both carbon (as glucose) and nitrogen (as ammonium) to a cyanolichen-forming fungal partner. This nutrient flow was established by seminal biochemical studies published in the 20th century. Since then, cyanolichen metabolism has received little attention, and the molecular mechanisms that underlie the physiology of lichenized Nostoc remain mostly unknown. Here, we aimed to elucidate the genomic and transcriptional changes that enable Nostoc’s metabolic role in cyanolichens. We used comparative genomics across 243 genomes of Nostoc s. lat. coupled with metatranscriptomic experiments using Peltigera cyanolichens. We found that genes for photoautotrophic carbon fixation are upregulated in lichenized Nostoc. This likely results in a higher rate of carbon fixation that allows Nostoc to provide carbon to the fungal partner while meeting its own metabolic needs. We also found that the transfer of ammonium from Nostoc to the lichen-forming fungus is facilitated by two molecular mechanisms: (i) transcriptional downregulation of glutamine synthetase, the key enzyme responsible for ammonium assimilation in Nostoc; and (ii) frequent losses of a putative high-affinity ammonium permease, which likely reduces Nostoc’s capacity to recapture leaked ammonium. Finally, we found that the development of motile hormogonia is downregulated in lichenized Nostoc, which resembles the repression of motility in Nostoc symbionts after they colonize symbiotic cavities of their plant hosts. Our results pave the way for a revival of cyanolichen ecophysiology in the omics era. 
    more » « less
  5. Abstract Selective partitioning of amino acids among organelles, cells, tissues, and organs is essential for cellular metabolism and plant growth. Nitrogen assimilation into glutamine and glutamate and de novo biosynthesis of most protein amino acids occur in chloroplasts; therefore, various transport mechanisms must exist to accommodate their directional efflux from the stroma to the cytosol and feed the amino acids into the extraplastidial metabolic and long-distance transport pathways. Yet, Arabidopsis (Arabidopsis thaliana) transporters functioning in plastidial export of amino acids remained undiscovered. Here, USUALLY MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTER 44 (UMAMIT44) was identified and shown to function in glutamate export from Arabidopsis chloroplasts. UMAMIT44 controls glutamate homeostasis within and outside of chloroplasts and influences nitrogen partitioning from leaves to sinks. Glutamate imbalances in chloroplasts and leaves of umamit44 mutants impact cellular redox state, nitrogen and carbon metabolism, and amino acid (AA) and sucrose supply of growing sinks, leading to negative effects on plant growth. Nonetheless, the mutant lines adjust to some extent by upregulating alternative pathways for glutamate synthesis outside the plastids and by mitigating oxidative stress through the production of other amino acids and antioxidants. Overall, this study establishes that the role of UMAMIT44 in glutamate export from chloroplasts is vital for controlling nitrogen availability within source leaf cells and for sink nutrition, with an impact on growth and seed yield. 
    more » « less