skip to main content

This content will become publicly available on December 1, 2023

Title: Sharpening the Distance Conjecture in diverse dimensions
A bstract The Distance Conjecture holds that any infinite-distance limit in the scalar field moduli space of a consistent theory of quantum gravity must be accompanied by a tower of light particles whose masses scale exponentially with proper field distance ‖ ϕ ‖ as m ~ exp(− λ ‖ ϕ ‖), where λ is order-one in Planck units. While the evidence for this conjecture is formidable, there is at present no consensus on which values of λ are allowed. In this paper, we propose a sharp lower bound for the lightest tower in a given infinite-distance limit in d dimensions: λ ≥ $$ 1/\sqrt{d-2} $$ 1 / d − 2 . In support of this proposal, we show that (1) it is exactly preserved under dimensional reduction, (2) it is saturated in many examples of string/M-theory compactifications, including maximal supergravity in d = 4 – 10 dimensions, and (3) it is saturated in many examples of minimal supergravity in d = 4 – 10 dimensions, assuming appropriate versions of the Weak Gravity Conjecture. We argue that towers with λ < $$ 1/\sqrt{d-2} $$ 1 / d − 2 discussed previously in the literature are always accompanied by even lighter towers more » with λ ≥ $$ 1/\sqrt{d-2} $$ 1 / d − 2 , thereby satisfying our proposed bound. We discuss connections with and implications for the Emergent String Conjecture, the Scalar Weak Gravity Conjecture, the Repulsive Force Conjecture, large-field inflation, and scalar field potentials in quantum gravity. In particular, we argue that if our proposed bound applies beyond massless moduli spaces to scalar fields with potentials, then accelerated cosmological expansion cannot occur in asymptotic regimes of scalar field space in quantum gravity. « less
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of High Energy Physics
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We formulate a series of conjectures relating the geometry of conformal manifolds to the spectrum of local operators in conformal field theories in d > 2 spacetime dimensions. We focus on conformal manifolds with limiting points at infinite distance with respect to the Zamolodchikov metric. Our central conjecture is that all theories at infinite distance possess an emergent higher-spin symmetry, generated by an infinite tower of currents whose anomalous dimensions vanish exponentially in the distance. Stated geometrically, the diameter of a non-compact conformal manifold must diverge logarithmically in the higher-spin gap. In the holographic context our conjectures are related to the Distance Conjecture in the swampland program. Interpreted gravitationally, they imply that approaching infinite distance in moduli space at fixed AdS radius, a tower of higher-spin fields becomes massless at an exponential rate that is bounded from below in Planck units. We discuss further implications for conformal manifolds of superconformal field theories in three and four dimensions.
  2. A bstract We argue for a relation between the supersymmetry breaking scale and the measured value of the dark energy density Λ. We derive it by combining two quantum gravity consistency swampland constraints, which tie the dark energy density Λ and the gravitino mass M 3 / 2 , respectively, to the mass scale of a light Kaluza-Klein tower and, therefore, to the UV cut-off of the effective theory. Whereas the constraint on Λ has recently led to the Dark Dimension scenario, with a prediction of a single mesoscopic extra dimension of the micron size, we use the constraint on M 3 / 2 to infer the implications of such a scenario for the scale of supersymmetry breaking. We find that a natural scale for supersymmetry signatures is $$ M=\mathcal{O}\left({\Lambda}^{\frac{1}{8}}\right)=\mathcal{O}\left(\textrm{TeV}\right). $$ M = O Λ 1 8 = O TeV . This mass scale is within reach of LHC and of the next generation of hadron colliders. Finally, we discuss possible string theory and effective supergravity realizations of the Dark Dimension scenario with broken supersymmetry.
  3. In this paper, we propose a new Swampland condition, the Trans-Planckian Censorship Conjecture (TCC), based on the idea that in a consistent quantum theory of gravity sub-Planckian quantum fluctuations should remain quantum and never become larger than the Hubble horizon and freeze in an expanding universe. Applied to the case of scalar fields, it leads to conditions that are similar to the refined dS Swampland conjecture. For large field ranges, TCC is stronger than the dS Swampland conjecture but it is weaker for small field ranges. In particular for asymptotic regions of field space, TCC leads to a bound |V′|≥2(d−1)(d−2)√V, which is consistent with all known cases in string theory. Like the dS Swampland conjecture, the TCC forbids long-lived meta-stable dS spaces, but it does allow sufficiently short-lived ones.
  4. Abstract

    We prove that$${{\,\textrm{poly}\,}}(t) \cdot n^{1/D}$$poly(t)·n1/D-depth local random quantum circuits with two qudit nearest-neighbor gates on aD-dimensional lattice withnqudits are approximatet-designs in various measures. These include the “monomial” measure, meaning that the monomials of a random circuit from this family have expectation close to the value that would result from the Haar measure. Previously, the best bound was$${{\,\textrm{poly}\,}}(t)\cdot n$$poly(t)·ndue to Brandão–Harrow–Horodecki (Commun Math Phys 346(2):397–434, 2016) for$$D=1$$D=1. We also improve the “scrambling” and “decoupling” bounds for spatially local random circuits due to Brown and Fawzi (Scrambling speed of random quantum circuits, 2012). One consequence of our result is that assuming the polynomial hierarchy ($${{\,\mathrm{\textsf{PH}}\,}}$$PH) is infinite and that certain counting problems are$$\#{\textsf{P}}$$#P-hard “on average”, sampling within total variation distance from these circuits is hard for classical computers. Previously, exact sampling from the outputs of even constant-depth quantum circuits was known to be hard for classical computers under these assumptions. However the standard strategy for extending this hardness result to approximate sampling requires the quantum circuits to have a property called “anti-concentration”, meaning roughly that the output has near-maximal entropy. Unitary 2-designs have the desired anti-concentration property. Our result improves the required depth for this level of anti-concentration from linear depthmore »to a sub-linear value, depending on the geometry of the interactions. This is relevant to a recent experiment by the Google Quantum AI group to perform such a sampling task with 53 qubits on a two-dimensional lattice (Arute in Nature 574(7779):505–510, 2019; Boixo et al. in Nate Phys 14(6):595–600, 2018) (and related experiments by USTC), and confirms their conjecture that$$O(\sqrt{n})$$O(n)depth suffices for anti-concentration. The proof is based on a previous construction oft-designs by Brandão et al. (2016), an analysis of how approximate designs behave under composition, and an extension of the quasi-orthogonality of permutation operators developed by Brandão et al. (2016). Different versions of the approximate design condition correspond to different norms, and part of our contribution is to introduce the norm corresponding to anti-concentration and to establish equivalence between these various norms for low-depth circuits. For random circuits with long-range gates, we use different methods to show that anti-concentration happens at circuit size$$O(n\ln ^2 n)$$O(nln2n)corresponding to depth$$O(\ln ^3 n)$$O(ln3n). We also show a lower bound of$$\Omega (n \ln n)$$Ω(nlnn)for the size of such circuit in this case. We also prove that anti-concentration is possible in depth$$O(\ln n \ln \ln n)$$O(lnnlnlnn)(size$$O(n \ln n \ln \ln n)$$O(nlnnlnlnn)) using a different model.

    « less
  5. A bstract We compute 1 /λ corrections to the four-point functions of half-BPS operators in SU( N ) $$ \mathcal{N} $$ N = 4 super-Yang-Mills theory at large N and large ’t Hooft coupling λ = $$ {g}_{\mathrm{YM}}^2N $$ g YM 2 N using two methods. Firstly, we relate integrals of these correlators to derivatives of the mass deformed S 4 free energy, which was computed at leading order in large N and to all orders in 1 /λ using supersymmetric localization. Secondly, we use AdS/CFT to relate these 1 /λ corrections to higher derivative corrections to supergravity for scattering amplitudes of Kaluza-Klein scalars in IIB string theory on AdS 5 × S 5 , which in the flat space limit are known from worldsheet calculations. These two methods match at the order corresponding to the tree level R 4 interaction in string theory, which provides a precise check of AdS/CFT beyond supergravity, and allow us to derive the holographic correlators to tree level D 4 R 4 order. Combined with constraints from [1], our results can be used to derive CFT data to one-loop D 4 R 4 order. Finally, we use AdS/CFT to fix these correlators in themore »limit where N is taken to be large while g YM is kept fixed. In this limit, we present a conjecture for the small mass limit of the S 4 partition function that includes all instanton corrections and is written in terms of the same Eisenstein series that appear in the study of string theory scattering amplitudes.« less