skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptation Strategies for Personalized Gait Neuroprosthetics
Personalization of gait neuroprosthetics is paramount to ensure their efficacy for users, who experience severe limitations in mobility without an assistive device. Our goal is to develop assistive devices that collaborate with and are tailored to their users, while allowing them to use as much of their existing capabilities as possible. Currently, personalization of devices is challenging, and technological advances are required to achieve this goal. Therefore, this paper presents an overview of challenges and research directions regarding an interface with the peripheral nervous system, an interface with the central nervous system, and the requirements of interface computing architectures. The interface should be modular and adaptable, such that it can provide assistance where it is needed. Novel data processing technology should be developed to allow for real-time processing while accounting for signal variations in the human. Personalized biomechanical models and simulation techniques should be developed to predict assisted walking motions and interactions between the user and the device. Furthermore, the advantages of interfacing with both the brain and the spinal cord or the periphery should be further explored. Technological advances of interface computing architecture should focus on learning on the chip to achieve further personalization. Furthermore, energy consumption should be low to allow for longer use of the neuroprosthesis. In-memory processing combined with resistive random access memory is a promising technology for both. This paper discusses the aforementioned aspects to highlight new directions for future research in gait neuroprosthetics.  more » « less
Award ID(s):
1739800
PAR ID:
10388309
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Date Published:
Journal Name:
Frontiers in Neurorobotics
Volume:
15
ISSN:
1662-5218
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Resistive Random Access Memory (RRAM) devices hold promise as a key enabler technology for energy-efficient, in-memory, and brain-inspired computing paradigms, with the potential to significantly enhance high-performance computing applications. However, the widespread adoption of RRAM technology in high-performance computing applications is hindered by non-ideal device metrics and various reliability challenges. RRAM devices are reported to exhibit critical device-to-device (D2D) and cycle-to-cycle (C2C) variability. In this paper, we investigate D2D and C2C variabilities of Tantalum Oxide RRAM devices and explore potentiation, depression, and endurance dynamics under varying operation conditions. Our ultimate goal is to address performance and reliability issues associated with the oxide-based RRAM device technology and facilitate its broader implementation in future computing applications. 
    more » « less
  2. Localization in urban environments is becoming increasingly important and used in tools such as ARCore [11], ARKit [27] and others. One popular mechanism to achieve accurate indoor localization as well as a map of the space is using Visual Simultaneous Localization and Mapping (Visual-SLAM). However, Visual-SLAM is known to be resource-intensive in memory and processing time. Further, some of the operations grow in complexity over time, making it challenging to run on mobile devices continuously. Edge computing provides additional compute and memory resources to mobile devices to allow offloading of some tasks without the large latencies seen when offloading to the cloud. In this paper, we present Edge-SLAM, a system that uses edge computing resources to offload parts of Visual-SLAM. We use ORB-SLAM2 as a prototypical Visual-SLAM system and modify it to a split architecture between the edge and the mobile device. We keep the tracking computation on the mobile device and move the rest of the computation, i.e., local mapping and loop closure, to the edge. We describe the design choices in this effort and implement them in our prototype. Our results show that our split architecture can allow the functioning of the Visual-SLAM system long-term with limited resources without affecting the accuracy of operation. It also keeps the computation and memory cost on the mobile device constant which would allow for deployment of other end applications that use Visual-SLAM. 
    more » « less
  3. Localization in urban environments is becoming increasingly important and used in tools such as ARCore [ 18 ], ARKit [ 34 ] and others. One popular mechanism to achieve accurate indoor localization and a map of the space is using Visual Simultaneous Localization and Mapping (Visual-SLAM). However, Visual-SLAM is known to be resource-intensive in memory and processing time. Furthermore, some of the operations grow in complexity over time, making it challenging to run on mobile devices continuously. Edge computing provides additional compute and memory resources to mobile devices to allow offloading tasks without the large latencies seen when offloading to the cloud. In this article, we present Edge-SLAM, a system that uses edge computing resources to offload parts of Visual-SLAM. We use ORB-SLAM2 [ 50 ] as a prototypical Visual-SLAM system and modify it to a split architecture between the edge and the mobile device. We keep the tracking computation on the mobile device and move the rest of the computation, i.e., local mapping and loop closing, to the edge. We describe the design choices in this effort and implement them in our prototype. Our results show that our split architecture can allow the functioning of the Visual-SLAM system long-term with limited resources without affecting the accuracy of operation. It also keeps the computation and memory cost on the mobile device constant, which would allow for the deployment of other end applications that use Visual-SLAM. We perform a detailed performance and resources use (CPU, memory, network, and power) analysis to fully understand the effect of our proposed split architecture. 
    more » « less
  4. Conventionally, DNN models are trained once in the cloud and deployed in edge devices such as cars, robots, or unmanned aerial vehicles (UAVs) for real-time inference. However, there are many cases that require the models to adapt to new environments, domains, or users. In order to realize such domain adaption or personalization, the models on devices need to be continuously trained on the device. In this work, we design EF-Train, an efficient DNN training accelerator with a unified channel-level parallelism-based convolution kernel that can achieve end-to-end training on resource-limited low-power edge-level FPGAs. It is challenging to implement on-device training on resource-limited FPGAs due to the low efficiency caused by different memory access patterns among forward and backward propagation and weight update. Therefore, we developed a data reshaping approach with intra-tile continuous memory allocation and weight reuse. An analytical model is established to automatically schedule computation and memory resources to achieve high energy efficiency on edge FPGAs. The experimental results show that our design achieves 46.99 GFLOPS and 6.09 GFLOPS/W in terms of throughput and energy efficiency, respectively. 
    more » « less
  5. Wheelchair users (WCUs) face additional challenges than non-WCU to multi-tasking (i.e. open doors, cook, use a cell-phone) while navigating their environments. While assistive devices have attempted to provide WCUs with mobility solutions that enable multi-tasking capabilities, current devices have been developed without the input of end-users and have proven to be non-usable. More balanced approaches that integrate the end-users’ voices may improve current assistive technology usability trends. This study sought to empathically understand the lived experience of WCUs, their needs towards a mobility device, and their perceptions towards hands-free mobility. Full-time WCUs and care providers participated in semi-structured interviews examining wheelchair use and perceptions towards current and future mobility devices. Thematic analysis was used to analyze interview data. 9 WCUs (aged 32.1 ± 7.0 years; wheelchair experience 17.9 ± 11.6 years) and five care providers (years caring for WCU 3.75 ± 0.96 years) participated in the study. The most common disability type was spinal cord injury (WCUs: n = 3; care providers: n = 3). Qualitative analysis revealed four key themes: (1) Current wheelchair usage, (2) WCU and care provider perspectives, (3) Future wheelchair, and (4) Hands-free wheelchair. Accordingly, participants desire bespoke, light-weight mobility devices that can through tight spaces, access uneven terrain, and free the hands during navigation. This study provides meaningful insight into the needs of WCUs and care providers that assistive technology innovators can use to develop more usable assistive technologies. Amongst study participants, the concept of a hands-free mobility device appears to be usable and desirable. 
    more » « less