skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards Intelligent Agents to Assist in Modular Construction: Evaluation of Datasets Generated in Virtual Environments for AI training
Modular construction aims at overcoming challenges faced by the traditional construction process such as the shortage of skilled workers, fast-track project requirements, and cost associated with on-site productivity losses and recurrent rework. Since manufacturing is done off-site in controlled factory settings, modular construction is associated with increased productivity and better quality control. However, because every construction project is unique and results in distinct work pieces and building elements to be assembled, modular construction factories necessitate better mechanisms to assist workers during the assembly process in order to minimize errors in selecting the pieces to be assembled and idle times while figuring out the next step in an assembly sequence. Machine intelligence provides opportunities for such assistance; however, a challenge is to rapidly generate large datasets with rich contextual data to train such intelligent agents. This work overviews a mechanism to generate such datasets in virtual environments and evaluates the performance of AI models trained using data generated in virtual environments in recognizing the next installation step in modular assembly sequences. Performance of the trained MV-CNN models (with accuracy of 0.97) shows that virtual environments can potentially be used to generate the required datasets for AI without the costly, time-consuming, and labor-intensive investments needed upfront for capturing real-world data.  more » « less
Award ID(s):
2036870
PAR ID:
10388386
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the ISARC
ISSN:
2413-5844
Page Range / eLocation ID:
327-333
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Yan, C; Chai, H; Sun, T; Yuan, PF (Ed.)
    Abstract. The building industry is facing environmental, technological, and economic challenges, placing significant pressure on preparing the workforce for Industry 4.0 needs. The fields of Architecture, Engineering, and Construction (AEC) are being reshaped by robotics technologies which demand new skills and creating disruptive change to job markets. Addressing the learning needs of AEC students, professionals, and industry workers is critical to ensuring the competitiveness of the future workforce. In recent years advancements in Information Technology, Augmented Reality (AR), Virtual Reality (VR), and Artificial Intelligence (AI) have led to new research and theories on virtual learning environments. In the AEC fields researchers are beginning to rethink current robotics training to counteract costly and resource-intensive in-person learning. However, much of this work has been focused on simulation physics and has yet to adequately address how to engage AEC learners with different learning abilities, styles, and diverse backgrounds.This paper presents the advantages and difficulties associated with using new technologies to develop virtual reality (VR) learning games for robotics. It describes an ongoing project for creating performance driven curriculum. Drawing on the Constructivist Learning Theory, the affordances of Adaptive Learning Systems, and data collection methods from the VR game environment, the project provides a customized and performance-oriented approach to carrying out practical robotics tasks in real-world scenarios. 
    more » « less
  2. Modern advances in AI have increased employer interest in tracking workers’ biometric signals — e.g., their brainwaves and facial expressions — to evaluate and make predictions about their performance and productivity. These technologies afford managers information about internal emotional and physiological states that were previously accessible only to individual workers, raising new concerns around worker privacy and autonomy. Yet, the research literature on the impact of AI-powered biometric work monitoring (AI-BWM) technologies on workers remains fragmented across disciplines and industry sectors, limiting our understanding of its impacts on workers at large. In this paper, we sytematically review 129 papers, spanning varied disciplines and industry sectors, that discuss and analyze the impact of AI-powered biometric monitoring technologies in occupational settings. We situate this literature across a process model that spans the development, deployment, and usage phases of these technologies. We further draw on Shelby et al.’s Taxonomy of Socio-technical Harms in AI systems to systematize the harms experienced by workers across the three phases of our process model. We find that the development, deployment, and sustained use of AI-powered biometric work monitoring technologies put workers at risk of a number of the socio-technical harms specified by Shelby et al.: e.g., by forcing workers to exert additional emotional labor to avoid flagging unreliable affect monitoring systems, or through the use of these data to make inferences about productivity. Our research contributes to the field of critical AI studies by highlighting the potential for a cascade of harms to occur when the impact of these technologies on workers is not considered at all phases of our process model. 
    more » « less
  3. Abstract Modular cloning systems streamline laboratory workflows by consolidating genetic ‘parts’ into reusable and modular collections, enabling researchers to fast-track strain construction. The GoldenBraid 2.0 modular cloning system utilizes the cutting property of type IIS restriction enzymes to create defined genetic ‘grammars’, which facilitate the reuse of standardized genetic parts and assembly of genetic parts in the right order. Here, we present a GoldenBraid 2.0 toolkit of genetic parts designed to accelerate cloning in the model bacterium Escherichia coli. This toolkit features 478 pre-made parts for gene expression and protein tagging as well as strains to expedite cloning and strain construction, enabling researchers to quickly generate functional plasmid-borne or chromosome-integrated expression constructs. In addition, we provide a complete laboratory manual with overviews of common reagent recipes, E. coli protocols, and community resources to promote toolkit utilization. By streamlining the assembly process, this resource will reduce the financial and temporal burdens of cloning and strain building in many laboratory settings. 
    more » « less
  4. Recent advances in robotics have enabled robots to collaborate with workers in shared, fenceless workplaces in construction and civil engineering, which can improve productivity and address labor shortages. However, this collaboration may lead to collisions between workers and robots. Targeting safe collaboration, this study proposes an intention‐aware motion planning method for robots to avoid collisions. This method involves two novel deep networks that allow robots to anticipate the motions of workers based on inferences about workers' motion intentions. Then, a probabilistic collision‐checking mechanism is developed that enables robots to estimate the collision probability with the motions of workers and generate collision‐free adjustments. The results verify that the method enables robots to predict workers' intended motions 1 s in advance and generate adjustments with a collision probability of less than 5.0% during collaborative masonry tasks. This study facilitates the safe implementation of collaborative robots in construction and civil engineering. 
    more » « less
  5. This study aimed to investigate the key technical and psychological factors that impact the architecture, engineering, and construction (AEC) professionals’ trust in collaborative robots (cobots) powered by artificial intelligence (AI). This study seeks to address the critical knowledge gaps surrounding the establishment and reinforcement of trust among AEC professionals in their collaboration with AI-powered cobots. In the context of the construction industry, where the complexities of tasks often necessitate human–robot teamwork, understanding the technical and psychological factors influencing trust is paramount. Such trust dynamics play a pivotal role in determining the effectiveness of human–robot collaboration on construction sites. This research employed a nationwide survey of 600 AEC industry practitioners to shed light on these influential factors, providing valuable insights to calibrate trust levels and facilitate the seamless integration of AI-powered cobots into the AEC industry. Additionally, it aimed to gather insights into opportunities for promoting the adoption, cultivation, and training of a skilled workforce to effectively leverage this technology. A structural equation modeling (SEM) analysis revealed that safety and reliability are significant factors for the adoption of AI-powered cobots in construction. Fear of being replaced resulting from the use of cobots can have a substantial effect on the mental health of the affected workers. A lower error rate in jobs involving cobots, safety measurements, and security of data collected by cobots from jobsites significantly impact reliability, and the transparency of cobots’ inner workings can benefit accuracy, robustness, security, privacy, and communication and result in higher levels of automation, all of which demonstrated as contributors to trust. The study’s findings provide critical insights into the perceptions and experiences of AEC professionals toward adoption of cobots in construction and help project teams determine the adoption approach that aligns with the company’s goals workers’ welfare. 
    more » « less