skip to main content

Title: Treadmill vs. overground walking: different response to physical interaction
Rehabilitation of human motor function is an issue of growing significance, and human-interactive robots offer promising potential to meet the need. For the lower extremity, however, robot-aided therapy has proven challenging. To inform effective approaches to robotic gait therapy, it is important to better understand unimpaired locomotor control: its sensitivity to different mechanical contexts and its response to perturbations. The present study evaluated the behavior of 14 healthy subjects who walked on a motorized treadmill and overground while wearing an exoskeletal ankle robot. Their response to a periodic series of ankle plantar flexion torque pulses, delivered at periods different from, but sufficiently close to, their preferred stride cadence, was assessed to determine whether gait entrainment occurred, how it differed across conditions, and if the adapted motor behavior persisted after perturbation. Certain aspects of locomotor control were exquisitely sensitive to walking context, while others were not. Gaits entrained more often and more rapidly during overground walking, yet, in all cases, entrained gaits synchronized the torque pulses with ankle push-off, where they provided assistance with propulsion. Furthermore, subjects entrained to perturbation periods that required an adaption toward slower cadence, even though the pulses acted to accelerate gait, indicating a neural adaptation of more » locomotor control. Lastly, during 15 post-perturbation strides, the entrained gait period was observed to persist more frequently during overground walking. This persistence was correlated with the number of strides walked at the entrained gait period (i.e., longer exposure), which also indicated a neural adaptation. NEW & NOTEWORTHY We show that the response of human locomotion to physical interaction differs between treadmill and overground walking. Subjects entrained to a periodic series of ankle plantar flexion torque pulses that shifted their gait cadence, synchronizing ankle push-off with the pulses (so that they assisted propulsion) even when gait cadence slowed. Entrainment was faster overground and, on removal of torque pulses, the entrained gait period persisted more prominently overground, indicating a neural adaptation of locomotor control. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of Neurophysiology
Page Range or eLocation-ID:
2089 to 2102
Sponsoring Org:
National Science Foundation
More Like this
  1. Robot assisted gait retraining is an increasingly common method for supporting restoration of walking function after neurological injury. Gait speed, an indicator of walking function, is correlated with propulsive force, a measure modulated by the posture of the trailing limb at push-off. With the ultimate goal of improving efficacy of robot assisted gait retraining, we sought to directly target gait propulsion, by exposing subjects to pulses of joint torque applied at the hip and knee joints to modulate push-off posture. In this work, we utilized a robotic exoskeleton to apply pulses of torque to the hip and knee joints, during individual strides, of 16 healthy control subjects, and quantified the effects of this intervention on hip extension and propulsive impulse during and after application of these pulses. We observed significant effects in the outcome measures primarily at the stride of pulse application and generally no after effects in the following strides. Specifically, when pulses were applied at late stance, we observed a significant increase in propulsive impulse when knee and/or hip flexion pulses were applied and a significant increase in hip extension angle when hip extension torque pulses were applied. When pulses were applied at early stance, we observed amore »significant increase in propulsive impulse associated with hip extension torque.« less
  2. Many stroke survivors suffer from hemiparesis, a condition that results in impaired walking ability. Walking ability is commonly assessed by walking speed, which is dependent on propulsive force generation both in healthy and stroke populations. Propulsive force generation is determined by two factors: ankle moment and the posture of the trailing limb during push-off. Recent work has used robotic assistance strategies to modulate propulsive force with some success. However, robotic strategies are limited by their high cost and the technical difficulty of fitting and operating robotic devices in a clinical setting. Here we present a new paradigm for goal-oriented gait training that utilizes a split belt treadmill to train both components of propulsive force generation, achieved by accelerating the treadmill belt of the trailing limb during push off. Belt accelerations require subjects to produce greater propulsive force to maintain their position on the treadmill and increase trailing limb angle through increased velocity of the accelerated limb. We hypothesized that locomotor adaptation to belt accelerations would result in measurable after effects in the form of increased propulsive force generation. We tested our protocol on healthy subjects at two acceleration magnitudes. Our results show that 79% of subjects significantly increased propulsive forcemore »generation following training, and that larger accelerations translated to larger, more persistent behavioral gains.« less
  3. For the controller of wearable lower-limb assistive devices, quantitative understanding of human locomotion serves as the basis for human motion intent recognition and joint-level motion control. Traditionally, the required gait data are obtained in gait research laboratories, utilizing marker-based optical motion capture systems. Despite the high accuracy of measurement, marker-based systems are largely limited to laboratory environments, making it nearly impossible to collect the desired gait data in real-world daily-living scenarios. To address this problem, the authors propose a novel exoskeleton-based gait data collection system, which provides the capability of conducting independent measurement of lower limb movement without the need for stationary instrumentation. The basis of the system is a lightweight exoskeleton with articulated knee and ankle joints. To minimize the interference to a wearer’s natural lower-limb movement, a unique two-degrees-of-freedom joint design is incorporated, integrating a primary degree of freedom for joint motion measurement with a passive degree of freedom to allow natural joint movement and improve the comfort of use. In addition to the joint-embedded goniometers, the exoskeleton also features multiple positions for the mounting of inertia measurement units (IMUs) as well as foot-plate-embedded force sensing resistors to measure the foot plantar pressure. All sensor signals are routedmore »to a microcontroller for data logging and storage. To validate the exoskeleton-provided joint angle measurement, a comparison study on three healthy participants was conducted, which involves locomotion experiments in various modes, including overground walking, treadmill walking, and sit-to-stand and stand-to-sit transitions. Joint angle trajectories measured with an eight-camera motion capture system served as the benchmark for comparison. Experimental results indicate that the exoskeleton-measured joint angle trajectories closely match those obtained through the optical motion capture system in all modes of locomotion (correlation coefficients of 0.97 and 0.96 for knee and ankle measurements, respectively), clearly demonstrating the accuracy and reliability of the proposed gait measurement system.« less
  4. Robot-assisted gait training is becoming increasingly common to support recovery of walking function after neurological injury. How to formulate controllers capable of promoting desired features in gait, i.e. goals, is complicated by the limited understanding of the human response to robotic input. A possible method to formulate controllers for goal-oriented gait training is based on the analysis of the joint torques applied by healthy subjects to modulate such goals. The objective of this work is to understand how sagittal plane joint torque is affected by two important gait parameters: gait speed (GS) and stride length (SL). We here present the results obtained from healthy subjects walking on a treadmill at different speeds, and asked to modulate stride length via visual feedback. Via principal component analysis, we extracted the global effects of the two factors on the peak-to-peak amplitude of joint torques. Next, we used a torque pulse approximation analysis to determine optimal timing and amplitude of torque pulses that approximate the SL-specific difference in joint torque profiles measured at different values of GS. Our results show a strong effect of GS on the torque profiles in all joints considered. In contrast, SL mostly affects the torque produced at the kneemore »joint at early and late stance, with smaller effects on the hip and ankle joints. Our analysis generated a set of torque assistance profiles that will be experimentally tested using gait training robots.« less
  5. Powered ankle exoskeletons that apply assistive torques with optimized timing and magnitude can reduce metabolic cost by ∼10% compared to normal walking. However, finding individualized optimal control parameters is time consuming and must be done independently for different walking modes (e.g., speeds, slopes). Thus, there is a need for exoskeleton controllers that are capable of continuously adapting torque assistance in concert with changing locomotor demands. One option is to use a biologically inspired, model-based control scheme that can capture the adaptive behavior of the human plantarflexors during natural gait. Here, based on previously demonstrated success in a powered ankle-foot prosthesis, we developed an ankle exoskeleton controller that uses a neuromuscular model (NMM) comprised of a Hill type musculotendon driven by a simple positive force feedback reflex loop. To examine the effects of NMM reflex parameter settings on (i) ankle exoskeleton mechanical performance and (ii) users’ physiological response, we recruited nine healthy, young adults to walk on a treadmill at a fixed speed of 1.25 m/s while donning bilateral tethered robotic ankle exoskeletons. To quantify exoskeleton mechanics, we measured exoskeleton torque and power output across a range of NMM controller Gain (0.8–2.0) and Delay (10–40 ms) settings, as well as amore »High Gain/High Delay (2.0/40 ms) combination. To quantify users’ physiological response, we compared joint kinematics and kinetics, ankle muscle electromyography and metabolic rate between powered and unpowered/zero-torque conditions. Increasing NMM controller reflex Gain caused increases in average ankle exoskeleton torque and net power output, while increasing NMM controller reflex Delay caused a decrease in net ankle exoskeleton power output. Despite systematic reduction in users’ average biological ankle moment with exoskeleton mechanical assistance, we found no NMM controller Gain or Delay settings that yielded changes in metabolic rate. Post hoc analyses revealed weak association at best between exoskeleton and biological mechanics and changes in users’ metabolic rate. Instead, changes in users’ summed ankle joint muscle activity with powered assistance correlated with changes in their metabolic energy use, highlighting the potential to utilize muscle electromyography as a target for on-line optimization in next generation adaptive exoskeleton controllers.« less