skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A FOSSIL AND PHYLOGENETIC PERSPECTIVE ON MARINE-FRESHWATER AND FRESHWATER-MARINE TRANSITIONS IN BRANCHIOPOD CRUSTACEANS
Award ID(s):
2135085
PAR ID:
10388624
Author(s) / Creator(s):
Date Published:
Journal Name:
Geological Society of America Abstracts with Programs
ISSN:
0016-7592
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bivalve molluscs are abundant in marine and freshwater ecosystems and perform important ecological functions. Bivalves have epifaunal or infaunal lifestyles but are largely filter feeders that couple the water column and benthos. Bivalve ecology is a large field of study, but few comparisons among aquatic ecosystems or lifestyles have been conducted. Bivalves impact nutrient cycling, create and modify habitat, and affect food webs directly (i.e., prey) and indirectly (i.e., movement of nutrients and energy). Materials accumulated in soft tissue and shells are used as environmental monitors. Freshwater mussel and oyster aggregations in rivers and estuaries are hot spots for biodiversity and biogeochemical transformations. Historically, human use includes food, tools, currency, and ornamentation. Bivalves provide direct benefits to modern cultures as food, building materials, and jewelry and provide indirect benefits by stabilizing shorelines and mitigating nutrient pollution. Research on bivalve-mediated ecological processes is diverse, and future synthesis will require collaboration across conventional disciplinary boundaries. 
    more » « less
  2. Abstract Evolutionary transitions of organisms between environments have long fascinated biologists, but attention has been focused almost exclusively on free-living organisms and challenges to achieve such transitions. This bias requires addressing because parasites are a major component of biodiversity. We address this imbalance by focusing on transitions of parasitic animals between marine and freshwater environments. We highlight parasite traits and processes that may influence transition likelihood (e.g., transmission mode, life cycle, host use), and consider mechanisms and directions of transitions. Evidence for transitions in deep time and at present are described, and transitions in our changing world are considered. We propose that environmental transitions may be facilitated for endoparasites because hosts reduce exposure to physiologically challenging environments and argue that adoption of an endoparasitic lifestyle entails an equivalent transitioning process as organisms switch from living in one environment (e.g., freshwater, seawater, or air) to living symbiotically within hosts. Environmental transitions of parasites have repeatedly resulted in novel forms and diversification, contributing to the tree of life. Recognizing the potential processes underlying present-day and future environmental transitions is crucial in view of our changing world and the current biodiversity crisis. 
    more » « less
  3. Energy is the currency of exchange within ecosystems which defines the strength and influence of interactions, particularly between predator and prey. The ability to estimate the productivity of an ecosystem is, therefore, dependent upon the estimation of consumer diet contents and their energetic quality. To estimate growth, reproduction, and, ultimately, survival of individuals, measures of prey quality for predators are essential both at the individual level and for scaling to ecosystem‐wide fluxes and pools. Among measures of prey quality, energy density (in kilojoules per gram) is the most used in ecology. Considerable efforts have established estimates of energy densities for many aquatic taxa. However, a database of aquatic organism energetics constructed by integrating and organizing across multiple sources spawning marine and freshwater habitats across the globe is needed to add both depth (more samples to measure within‐taxa variation) and breadth (more taxa). To generate a comprehensive energy density database of aquatic organisms, we performed a multifaceted review to find sources from the peer‐reviewed and grey literature with a broad search on Web of Science, from citations of related literature, and a haphazard recommendation from experts. Estimates of energy density of whole organism live mass (in kilojoules per gram wet mass) were prioritized to better relate to diet and energetics studies. When energy density was only provided per gram dry mass, the dry mass and percentage water were used to calculate energy density per gram wet mass. Sub‐organism (i.e., tissue specific) energy density estimates are included (e.g., muscle, liver, and egg) when only these were reported. A total of 3810 records are included from 134 sources, covering 2018 unique taxa, of which 1771 (87.76%) are identified at the species level. Species or taxa‐specific energy densities ranged from 0.015 to 17.949 kJ/g wet mass (WM) with a mean ± SD = 4.509 ± 1.94 kJ/g WM and median = 4.225 kJ/g WM. Among those phyla with more than three species (nphyla = 9), chordates (ntaxa = 1283) had the highest average energy density (mean ± SD; 4.92 ± 1.90; 0.162–17.9 kJ/g WM) and ctenophores (ntaxa = 4) had the lowest average (0.0988 ± 0.074; 0.03–0.205 kJ/g WM). Each record includes the organism taxonomy to the lowest resolution listed in the original source, energetic data available from the source including body composition and energy density data, number of replicates and methodology for measuring energetics information—primarily split between bomb calorimetry and proximate composition—as well as the source's author(s), year, and publication. Additional meta‐data are included whenever possible based on details from the original source including the (1) environmental features: area, method, and timing of capture; (2) methodological features: storage method, storage duration, and tissue type measured; and (3) organismal features: mass, length, and sex as well as any additional notes about the source. This comprehensive database integrates those data discoverable by our search and which met inclusion criteria identified above in a taxonomic and spatial organization framework to facilitate modeling trophic interactions, bioenergetics, growth, productivity, and energy fluxes through marine and freshwater ecosystems. The data and code are released under the Creative Commons Attribution 4.0 license. 
    more » « less