skip to main content


Title: Plasma parameters and the reduction potential at a plasma–liquid interface
Nonthermal plasmas in contact with liquids have been shown to generate a variety of reactive species capable of initiating reduction–oxidation (redox) reactions at the electrochemically active plasma–liquid interface. In conventional electrochemical cells, selective redox chemistry is achieved by controlling the reduction potential at the solid electrode–electrolyte interface by applying a bias via an external circuit. In the case of plasma–liquid systems, an analogous means of tuning the reduction potential near the interface has not clearly been identified. When treated as a floating surface, the liquid is expected to adopt a net negative charge to balance the flux of hot electrons and relatively cold positive ions. The reduction potential near the plasma–liquid interface is hypothesized to be proportional to the floating potential, which can be approximated using an analytical model provided the plasma parameters are known. Herein, we present a framework for correlating the electron density and electron temperature of a noble gas plasma jet to the reduction potential near the plasma–liquid interface. The plasma parameters were acquired for an argon atmospheric plasma jet in contact with an aqueous solution by means of laser Thomson scattering. The reduction potential was determined using identical reference electrodes to measure the potential difference between the plasma–liquid interface and bulk solution. Interestingly, the measured reduction potentials near the plasma–liquid interface were found to be in good agreement with the model-predicted values determined using the plasma parameters obtained from the Thomson scattering experiments.  more » « less
Award ID(s):
2033714
NSF-PAR ID:
10388849
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
24
Issue:
23
ISSN:
1463-9076
Page Range / eLocation ID:
14257 to 14268
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In plasma-driven solution electrolysis (PDSE), gas-phase plasma-produced species interact with an electrolytic solution to produce, for example, nanoparticles. An atmospheric pressure plasma jet (APPJ) directed onto a liquid solution containing a metallic salt will promote reduction of metallic ions in solution, generating metallic clusters that nucleate to form nanoparticles. In this article, results from a computational investigation are discussed of a PDSE process in which a radio-frequency APPJ sustained in helium impinges on a silver nitrate solution, resulting in growth of silver nanoparticles. A reaction mechanism was developed and implemented in a global plasma chemistry model to predict nanoparticle growth. To develop the reaction mechanism, density functional theory was used to generate probable silver growth pathways up to Ag 9 . Neutral clusters larger than Ag 9 were classified as nanoparticles. Kinetic reaction rate coefficients for thermodynamically favorable growth pathways were estimated based on an existing, empirically determined base reaction mechanism for smaller Ag particle interactions. These rates were used in conjunction with diffusion-controlled reaction rate coefficients that were calculated for other Ag species. The role of anions in reduction of Ag n ions in forming nanoparticles is also discussed. Oxygen containing impurities or admixtures to the helium, air entrainment into the APPJ, and dissociation of saturated water vapor above the solution can produce additional reactive oxygen species in solution, resulting in the production of anions and [Formula: see text] in particular. For a given molarity, delivering a sufficient fluence of reducing species will produce similar nanoparticle densities and sizes for all applied power levels. Comparisons are made to alternate models for nanoparticle formation, including charged nanoparticles and use of direct current plasmas. 
    more » « less
  2. Abstract This study reports an experimental comparison of two types of atmospheric pressure plasma jets in terms of their fundamental plasma characteristics and efficacy in bacterial sterilization. The plasma jets are fabricated by inserting a high voltage electrode inside a one-end closed (double DBD plasma jet) or both ends open (single DBD plasma jet) quartz tubes which are further enclosed inside a second quartz tube containing a ground electrode. Both plasma jets are operated in contact with water surface by using a unipolar pulsed DC power supply with helium as the working gas. Results from electrical and time-resolved imaging show that the single DBD configuration induces 3–4 times higher accumulation of charges onto the water surface with significantly faster propagation of plasma bullets. These results are accompanied by the higher discharge intensity as well as stronger emissions from short-lived reactive species which were analyzed through optical emission spectroscopy at the plasma-water interface. The rotational temperature for the single DBD configuration was observed to be higher making it unsafe for direct treatments of sensitive biological targets. These characteristics of the single DBD configuration result in the production of more than two times higher concentration of H 2 O 2 in plasma activated water. Shielding of the HV electrode reduces the plasma potential which in turn reduces the electric field & electron energy at the plasma-water interface. The reduced electric field for the double DBD configuration was lower by ≈463 Td than the single DBD configuration. The bactericidal efficacy of the two configurations of the plasma jets were tested against Escherichia coli , a well studied Gram-negative bacterium that can be commensal and pathogenic in human body. Our results demonstrate that although single DBD plasma jet result in stronger antibacterial effects, the double DBD configuration could be safer. 
    more » « less
  3. This paper demonstrates a simultaneous Thomson scattering and rotational Raman scattering spectroscopy in a weakly ionized plasma in air. Thomson scattering was collected in the forward scattering direction, in order to compress the relative spectra width of Thomson scattering from the plasma. Simultaneous measurements of rotational Raman scattering were obtained in the same direction, which was not affected by the collection angles. The measurements thus yielded electron temperature (Te) and electron number density (ne) as well as gas temperature in a weakly ionized atmospheric pressure plasma. The separation of rotational Raman scattering and Thomson scattering occurred when the scattering angle decreased to 20 degrees in the plasma, where the air temperature was found to be 150 ± 25 °C, and electron temperature of the plasma was 0.587 ± 0.087 eV, and electron number density was (1.608 ± 0.416) × 1021 m-3. The technique could be used for various plasma and combustion diagnostics in realistic engineering environments.

     
    more » « less
  4. It has recently been demonstrated experimentally that a turbulent plasma created by the collision of two inhomogeneous, asymmetric, weakly magnetized, laser-produced plasma jets can generate strong stochastic magnetic fields via the small-scale turbulent dynamo mechanism, provided the magnetic Reynolds number of the plasma is sufficiently large. In this paper, we compare such a plasma with one arising from two pre-magnetized plasma jets whose creation is identical save for the addition of a strong external magnetic field imposed by a pulsed magnetic field generator. We investigate the differences between the two turbulent systems using a Thomson-scattering diagnostic, x-ray self-emission imaging, and proton radiography. The Thomson-scattering spectra and x-ray images suggest that the external magnetic field has a limited effect on the plasma dynamics in the experiment. Although the external magnetic field induces collimation of the flows in the colliding plasma jets and although the initial strengths of the magnetic fields arising from the interaction between the colliding jets are significantly larger as a result of the external field, the energies and morphologies of the stochastic magnetic fields post-amplification are indistinguishable. We conclude that, for turbulent laser-plasmas with supercritical magnetic Reynolds numbers, the dynamo-amplified magnetic fields are determined by the turbulent dynamics rather than the seed fields or modest changes in the initial flow dynamics of the plasma, a finding consistent with theoretical expectations and simulations of turbulent dynamos. 
    more » « less
  5. It has recently been demonstrated experimentally that a turbulent plasma created by the collision of two inhomogeneous, asymmetric, weakly magnetized, laser-produced plasma jets can generate strong stochastic magnetic fields via the small-scale turbulent dynamo mechanism, provided the magnetic Reynolds number of the plasma is sufficiently large. In this paper, we compare such a plasma with one arising from two pre-magnetized plasma jets whose creation is identical save for the addition of a strong external magnetic field imposed by a pulsed magnetic field generator. We investigate the differences between the two turbulent systems using a Thomson-scattering diagnostic, x-ray selfemission imaging, and proton radiography. The Thomson-scattering spectra and x-ray images suggest that the external magnetic field has a limited effect on the plasma dynamics in the experiment. Although the external magnetic field induces collimation of the flows in the colliding plasma jets and although the initial strengths of the magnetic fields arising from the interaction between the colliding jets are significantly larger as a result of the external field, the energies and morphologies of the stochastic magnetic fields post-amplification are indistinguishable. We conclude that, for turbulent laser-plasmas with supercritical magnetic Reynolds numbers, the dynamo-amplified magnetic fields are determined by the turbulent dynamics rather than the seed fields or modest changes in the initial flow dynamics of the plasma, a finding consistent with theoretical expectations and simulations of turbulent dynamos. https://doi.org/10.1063/5.0084345 
    more » « less