skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Perturbation bounds for (nearly) orthogonally decomposable tensors with statistical applications
Abstract We develop deterministic perturbation bounds for singular values and vectors of orthogonally decomposable tensors, in a spirit similar to classical results for matrices such as those due to Weyl, Davis, Kahan and Wedin. Our bounds demonstrate intriguing differences between matrices and higher order tensors. Most notably, they indicate that for higher order tensors perturbation affects each essential singular value/vector in isolation, and its effect on an essential singular vector does not depend on the multiplicity of its corresponding singular value or its distance from other singular values. Our results can be readily applied and provide a unified treatment to many different problems involving higher order orthogonally decomposable tensors. In particular, we illustrate the implications of our bounds through connected yet seemingly different high-dimensional data analysis tasks: the unsupervised learning scenario of tensor SVD and the supervised task of tensor regression, leading to new insights in both of these settings.  more » « less
Award ID(s):
2052955 2015285
PAR ID:
10389089
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Information and Inference: A Journal of the IMA
Volume:
12
Issue:
2
ISSN:
2049-8772
Format(s):
Medium: X Size: p. 1044-1072
Size(s):
p. 1044-1072
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper we study the training dynamics for gradient flow on overparametrized tensor decomposition problems. Empirically, such training process often first fits larger components and then discovers smaller components, which is similar to a tensor deflation process that is commonly used in tensor decomposition algorithms. We prove that for orthogonally decomposable tensor, a slightly modified version of gradient flow would follow a tensor deflation process and recover all the tensor components. Our proof suggests that for orthogonal tensors, gradient flow dynamics works similarly as greedy low-rank learning in the matrix setting, which is a first step towards understanding the implicit regularization effect of over-parametrized models for low-rank tensors. 
    more » « less
  2. We develop new techniques for proving lower bounds on the least singular value of random matrices with limited randomness. The matrices we consider have entries that are given by polynomials of a few underlying base random variables. This setting captures a core technical challenge for obtaining smoothed analysis guarantees in many algorithmic settings. Least singular value bounds often involve showing strong anti-concentration inequalities that are intricate and much less understood compared to concentration (or large deviation) bounds. First, we introduce a general technique for proving anti-concentration that uses well-conditionedness properties of the Jacobian of a polynomial map, and show how to combine this with a hierarchical net argument to prove least singular value bounds. Our second tool is a new statement about least singular values to reason about higher-order lifts of smoothed matrices and the action of linear operators on them. Apart from getting simpler proofs of existing smoothed analysis results, we use these tools to now handle more general families of random matrices. This allows us to produce smoothed analysis guarantees in several previously open settings. These new settings include smoothed analysis guarantees for power sum decompositions and certifying robust entanglement of subspaces, where prior work could only establish least singular value bounds for fully random instances or only show non-robust genericity guarantees. 
    more » « less
  3. null (Ed.)
    Abstract Higher-order tensors can represent scores in a rating system, frames in a video, and images of the same subject. In practice, the measurements are often highly quantized due to the sampling strategies or the quality of devices. Existing works on tensor recovery have focused on data losses and random noises. Only a few works consider tensor recovery from quantized measurements but are restricted to binary measurements. This paper, for the first time, addresses the problem of tensor recovery from multi-level quantized measurements by leveraging the low CANDECOMP/PARAFAC (CP) rank property. We study the recovery of both general low-rank tensors and tensors that have tensor singular value decomposition (TSVD) by solving nonconvex optimization problems. We provide the theoretical upper bounds of the recovery error, which diminish to zero when the sizes of dimensions increase to infinity. We further characterize the fundamental limit of any recovery algorithm and show that our recovery error is nearly order-wise optimal. A tensor-based alternating proximal gradient descent algorithm with a convergence guarantee and a TSVD-based projected gradient descent algorithm are proposed to solve the nonconvex problems. Our recovery methods can also handle data losses and do not necessarily need the information of the quantization rule. The methods are validated on synthetic data, image datasets, and music recommender datasets. 
    more » « less
  4. Abstract This paper introduces a general framework of Semi-parametric TEnsor Factor Analysis (STEFA) that focuses on the methodology and theory of low-rank tensor decomposition with auxiliary covariates. Semi-parametric TEnsor Factor Analysis models extend tensor factor models by incorporating auxiliary covariates in the loading matrices. We propose an algorithm of iteratively projected singular value decomposition (IP-SVD) for the semi-parametric estimation. It iteratively projects tensor data onto the linear space spanned by the basis functions of covariates and applies singular value decomposition on matricized tensors over each mode. We establish the convergence rates of the loading matrices and the core tensor factor. The theoretical results only require a sub-exponential noise distribution, which is weaker than the assumption of sub-Gaussian tail of noise in the literature. Compared with the Tucker decomposition, IP-SVD yields more accurate estimators with a faster convergence rate. Besides estimation, we propose several prediction methods with new covariates based on the STEFA model. On both synthetic and real tensor data, we demonstrate the efficacy of the STEFA model and the IP-SVD algorithm on both the estimation and prediction tasks. 
    more » « less
  5. Field-guided parameterization methods have proven effective for quad meshing of surfaces; these methods compute smoothcross fieldsto guide the meshing process and then integrate the fields to construct a discrete mesh. A key challenge in extending these methods to three dimensions, however, isrepresentationof field values. Whereas cross fields can be represented by tangent vector fields that form a linear space, the 3D analog—an octahedral frame field—takes values in a nonlinear manifold. In this work, we describe the space of octahedral frames in the language of differential and algebraic geometry. With this understanding, we develop geometry-aware tools for optimization of octahedral fields, namely geodesic stepping and exact projection via semidefinite relaxation. Our algebraic approach not only provides an elegant and mathematically sound description of the space of octahedral frames but also suggests a generalization to frames whose three axes scale independently, better capturing the singular behavior we expect to see in volumetric frame fields. These newodeco frames, so called as they are represented by orthogonally decomposable tensors, also admit a semidefinite program–based projection operator. Our description of the spaces of octahedral and odeco frames suggests computing frame fields via manifold-based optimization algorithms; we show that these algorithms efficiently produce high-quality fields while maintaining stability and smoothness. 
    more » « less