skip to main content


Title: A Far‐Red Molecular Rotor Fluorogenic Trehalose Probe for Live Mycobacteria Detection and Drug‐Susceptibility Testing
Abstract

Increasing the speed, specificity, sensitivity, and accessibility of mycobacteria detection tools are important challenges for tuberculosis (TB) research and diagnosis. In this regard, previously reported fluorogenic trehalose analogues have shown potential, but their green‐emitting dyes may limit sensitivity and applications in complex settings. Here, we describe a trehalose‐based fluorogenic probe featuring a molecular rotor turn‐on fluorophore with bright far‐red emission (RMR‐Tre). RMR‐Tre, which exploits the unique biosynthetic enzymes and environment of the mycobacterial outer membrane to achieve fluorescence activation, enables fast, no‐wash, low‐background fluorescence detection of live mycobacteria. Aided by the red‐shifted molecular rotor fluorophore, RMR‐Tre exhibited up to a 100‐fold enhancement inM. tuberculosislabeling compared to existing fluorogenic trehalose probes. We show that RMR‐Tre reports onM. tuberculosisdrug resistance in a facile assay, demonstrating its potential as a TB diagnostic tool.

 
more » « less
Award ID(s):
1654408 2117338
NSF-PAR ID:
10389132
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
62
Issue:
2
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Increasing the speed, specificity, sensitivity, and accessibility of mycobacteria detection tools are important challenges for tuberculosis (TB) research and diagnosis. In this regard, previously reported fluorogenic trehalose analogues have shown potential, but their green‐emitting dyes may limit sensitivity and applications in complex settings. Here, we describe a trehalose‐based fluorogenic probe featuring a molecular rotor turn‐on fluorophore with bright far‐red emission (RMR‐Tre). RMR‐Tre, which exploits the unique biosynthetic enzymes and environment of the mycobacterial outer membrane to achieve fluorescence activation, enables fast, no‐wash, low‐background fluorescence detection of live mycobacteria. Aided by the red‐shifted molecular rotor fluorophore, RMR‐Tre exhibited up to a 100‐fold enhancement inM. tuberculosislabeling compared to existing fluorogenic trehalose probes. We show that RMR‐Tre reports onM. tuberculosisdrug resistance in a facile assay, demonstrating its potential as a TB diagnostic tool.

     
    more » « less
  2. Abstract

    Tuberculosis (TB) remains a significant cause of mortality worldwide. Metagenomic next-generation sequencing has the potential to reveal biomarkers of active disease, identify coinfection, and improve detection for sputum-scarce or culture-negative cases. We conducted a large-scale comparative study of 428 plasma, urine, and oral swab samples from 334 individuals from TB endemic and non-endemic regions to evaluate the utility of a shotgun metagenomic DNA sequencing assay for tuberculosis diagnosis. We found that the composition of the control population had a strong impact on the measured performance of the diagnostic test: the use of a control population composed of individuals from a TB non-endemic region led to a test with nearly 100% specificity and sensitivity, whereas a control group composed of individuals from TB endemic regions exhibited a high background of nontuberculous mycobacterial DNA, limiting the diagnostic performance of the test.Using mathematical modeling and quantitative comparisons to matched qPCR data, we found that the burden ofMycobacterium tuberculosisDNA constitutes a very small fraction (0.04 or less) of the total abundance of DNA originating from mycobacteria in samples from TB endemic regions. Our findings suggest that the utility of a minimally invasive metagenomic sequencing assay for pulmonary tuberculosis diagnostics is limited by the low burden ofM. tuberculosisand an overwhelming biological background of nontuberculous mycobacterial DNA.

     
    more » « less
  3. Abstract

    The global pathogenMycobacterium tuberculosisand other species in the suborderCorynebacterineaepossess a distinctive outer membrane called the mycomembrane (MM). The MM is composed of mycolic acids, which are either covalently linked to an underlying arabinogalactan layer or incorporated into trehalose glycolipids that associate with the MM non‐covalently. These structures are generated through a process called mycolylation, which is central to mycobacterial physiology and pathogenesis and is an important target for tuberculosis drug development. Current approaches to investigating mycolylation rely on arduous analytical methods that occur outside the context of a whole cell. Herein, we describe mycobacteria‐specific chemical reporters that can selectively probe either covalent arabinogalactan mycolates or non‐covalent trehalose mycolates in live mycobacteria. These probes, in conjunction with bioorthogonal chemistry, enable selective in situ detection of the major MM components.

     
    more » « less
  4. Abstract

    Tuberculosis (TB) is a leading source of infectious disease mortality globally. Antibiotic‐resistant strains comprise an estimated 10 % of new TB cases and present an urgent need for novel therapeutics. β‐lactam antibiotics have traditionally been ineffective againstM. tuberculosis(Mtb), the causative agent of TB, due to the organism's inherent expression of β‐lactamases that destroy the electrophilic β‐lactam warhead. We have developed novel β‐lactam conjugates, which exploit this inherent β‐lactamase activity to achieve selective release of pyrazinoic acid (POA), the active form of a first‐line TB drug. These conjugates are selectively active againstM. tuberculosisand related mycobacteria, and activity is retained or even potentiated in multiple resistant strains and models. Preliminary mechanistic investigations suggest that both the POA “warhead” as well as the β‐lactam “promoiety” contribute to the observed activity, demonstrating a codrug strategy with important implications for future TB therapy.

     
    more » « less
  5. Abstract

    Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains the leading global cause of death from an infectious agent. Mycobacteria thrive within their host Mϕs and presently, there is no animal model that permits combined in vitro and in vivo study of mycobacteria-host Mϕ interactions. Mycobacterium marinum (Mm), which causes TB in aquatic vertebrates, has become a promising model for TB research, owing to its close genetic relatedness to Mtb and the availability of alternative, natural host aquatic animal models. Here, we adopted the Xenopus laevis frog-Mm surrogate infection model to study host Mϕ susceptibility and resistance to mycobacteria. Mϕ differentiation is regulated though the CSF-1 receptor (CSF-1R), which is activated by CSF-1 and the unrelated IL-34 cytokines. Using combined in vitro and in vivo approaches, we demonstrated that CSF-1-Mϕs exacerbate Mm infections, are more susceptible to mycobacterial entry and are less effective at killing this pathogen. By contrast, IL-34-Mϕs confer anti-Mm resistance in vivo, are less susceptible to Mm entry and more effectively eliminate internalized mycobacteria. Moreover, we showed that the human CSF-1- and IL-34-Mϕs are likewise, respectively, susceptible and resistant to mycobacteria, and that both frog and human CSF-1-Mϕs are more prone to the spread of mycobacteria and to being infected by Mm-laden Mϕs than the respective IL-34-Mϕ subsets. This work marks the first report describing the roles of these Mϕ subsets in mycobacterial disease and may well lead to the development of more targeted anti-Mtb approaches.

     
    more » « less