skip to main content


Title: Micro-calcifications predict plaque vulnerability and initiate rupture of the fibrous cap
Introduction: The mechanical stability of an atheroma fibrous cap (FC) is a crucial factor for the risk of heart attack or stroke in asymptomatic vulnerable plaques. Common determinants of plaque vulnerability are the cap thickness and the presence of micro-calcifications (µCalcs). Higher local stresses have been linked to thin caps(<65µm) and, more recently, our lab demonstrated how µCalcs can potentially initiate cap rupture [1-3]. When combined, these two factors can compromise to a greater extent the stability of the plaque. On this basis, we quantitatively analyzed both individual and combined effects of key determinants of plaque rupture using a tissue damage model on idealized atherosclerotic arteries. Our results were then tested against a diseased human coronary sample. Methods: We performed 28 finite element simulations on three-dimensional idealized atherosclerotic arteries and a human coronary sample. The idealized models present 10% lumen narrowing and 1.25 remodeling index (RI)(Fig.1A). The FC thickness values that we considered were of 50, 100, 150 and 200µm. The human coronary presents a RI=1.31, with 31% lumen occlusion and a 140µm-thick cap(Fig.1B). The human model is based on 6.7μm high-resolution microcomputed tomography (HR-μCT) images. The µCalc has a diameter of 15µm and each artery was expanded up to a systolic pressure of 120mmHg. Layer-specific material properties were de-fined by the HGO model coupled with the hyperelastic failure description proposed by Volokh et al. [4] to repli-cate the rupture of the FC. We considered a max. princi-pal stress for rupture of 545kPa[5]. The lipid core and the µCalc were considered as elastic materials (Ecore = 5kPa, νcore = 0.49; EµCalc= 18,000 kPa, νµCalc=0.3). To obtain a detailed analysis of the cap stresses and rupture progres-sion, a sub-modeling approach was implemented using ABAQUS (Dassault Systemes, v.2019) (Fig. 1). Results: We investigated the quantitative effect of cap thickness and µCalc by simulating tissue failure and de-riving a vulnerability index (VI) for each risk factor. The VI coefficient was defined as the peak cap stress (PCS) normalized by the threshold stress for rupture (545kPa). The relationship between the risk factors and VI was de-termined by deriving the Pearson’s correlation coefficient (PCC) followed by one-tailed t-test (SPSS, IBM, v.25). The null hypothesis was rejected if p<0.05. The presence of the µCalc is the factor that manifests the greater impact on cap stability, leading to at least a 2.5-fold increase in VI and tissue rupture regardless of cap thickness (Fig.2A,B). One µCalc in the cap is the first predictor of vulnerability, with PCCµCalc=0.59 and pµCalc=0.001. Our results also confirm the substantial in-fluence of cap thickness, with an exponential increase in stresses as the cap becomes thinner. The 50µm cap is the only phenotype that ruptures without µCalc (Fig2A). The human sample exhibits PCS levels that are close to the idealized case with 150µm cap and it doesn’t rupture in the absence of the µCalc (PCShuman=233kPa, PCSideal= 252kPa). Conversely, the phenotypes with the µCalc showed an increase in VI of about 2.5 and reached rup-ture under the same blood pressure regime. Conclusions: Our results clearly show the multifactorial nature of plaque vulnerability and the significance of micro-calcifications on the cap mechanical stability. The presence of a μCalc strongly amplifies the stresses in the surrounding tissue, and it can provoke tissue failure even in thick caps that would otherwise be classified as stable. Clearly, plaque phenotypes with a thin cap and μCalcs in the tissue represent the most vulnerable condition. Finally, these observations are well validated by the case of the human atherosclerotic segment, which closely compares to its corresponding idealized model. The novel imple-mentation of the tissue damage description and the defi-nition of a vulnerability index allow one to quantitatively analyze the individual and combined contribution of key determinants of cap rupture, which precedes the for-mation of a thrombus and myocardial infarction.  more » « less
Award ID(s):
1662970 2018485
NSF-PAR ID:
10389220
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
48th Annual Northeast Bioengineering Conference (NEBEC 2022)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background The mechanical rupture of an atheroma cap may initiate a thrombus formation, followed by an acute coronary event and death. Several morphology and tissue composition factors have been identified to play a role on the mechanical stability of an atheroma, including cap thickness, lipid core stiffness, remodeling index, and blood pressure. More recently, the presence of microcalcifications (μCalcs) in the atheroma cap has been demonstrated, but their combined effect with other vulnerability factors has not been fully investigated. Materials and methods We performed numerical simulations on 3D idealized lesions and a microCT-derived human coronary atheroma, to quantitatively analyze the atheroma cap rupture. From the predicted cap stresses, we defined a biomechanics-based vulnerability index (VI) to classify the impact of each risk factor on plaque stability, and developed a predictive model based on their synergistic effect. Results Plaques with low remodeling index and soft lipid cores exhibit higher VI and can shift the location of maximal wall stresses. The VI exponentially rises as the cap becomes thinner, while the presence of a μCalc causes an additional 2.5-fold increase in vulnerability for a spherical inclusion. The human coronary atheroma model had a stable phenotype, but it was transformed into a vulnerable plaque after introducing a single spherical μCalc in its cap. Overall, cap thickness and μCalcs are the two most influential factors of mechanical rupture risk. Conclusions Our findings provide supporting evidence that high risk lesions are non-obstructive plaques with softer (lipid-rich) cores and a thin cap with μCalcs. However, stable plaques may still rupture in the presence of μCalcs. 
    more » « less
  2. Introduction The mechanical vulnerability of the atherosclerotic cap is a crucial risk factor in asymptomatic fibroatheromas. Our research group demonstrated using numerical modeling that microcalcifications (µCalcs) located in the fibrous cap can multiply the tissue background stress by a factor 2-7[1-3]. We showed how this effect depends on the size and the ratio of the gap between particles pairs (h) and their diameter (D) along the tensile axis. In this context, we studied the impact of micro-beads of varying diameters and concentration on the rupture of human fibroatheroma laboratory models. Methods We created silicone-based (DowsilEE-3200, Dow Corning) dumbbell-shaped models (80%-scaled ASTM D412-C) of arterial tissues. Samples were divided into three groups: (1) without μBeads (control, n=12), (2) with μBeads of varying diameter (D=30,50,100μm) at a constant concentration of 1% weight (n=36), (3) with μBeads of constant diameter (D=50μm) at different concentrations (3% and 5% weight) (n=24). Before testing, samples were scanned under Micro-CT, at a resolution of 4µm. Images were then reconstructed in NRecon (SkySCan, v.2014) and structural parameters obtained in CTan (SkyScan, v.2014). These data were used to calculate the number of beads and their respective h/D ratio in a custom-made MATLAB script. We tested the samples using a custom-made micro material testing system equipped with real-time control and acquisition software (LabVIEW, v. 2018, NI). The reaction force and displacement were measured by the system and images of the sample were recorded by a high-resolution camera. The true stress and strain profiles of each sample were obtained by means of Digital Image Correlation (DIC). Results Samples with and without μBeads exhibited a distinct hyperelastic behaviour typical of arterial tissues (Fig1). Comparison of the mean ultimate stress (UTS) between groups was performed by one-way ANOVA test followed by post-hoc pairwise comparison. Regardless of the group, the presence of μBeads determined a statistically significant reduction in UTS (Fig2). Increasing the μBeads concentration was also positively correlated with lower stresses at rupture as more clusters formed resulting in lower values of h/D (Table1). Discussions Our results clearly capture the influence of μBeads on the rupture threshold of a vascular tissue mimicking material. In fact, samples with μBeads exhibit levels of UTS that are around two times lower than the control group. This effect appears to be dependent on the μBeads proximity, as lower h/D correlates with higher UTS reductions. On the other hand, the effect of particle size is not apparent for the diameters considered in this study. The plausible explanation for the observed change in rupture threshold is the increase in stress concentration around spherical μBeads, which we have previously shown in analytical and numerical studies [1-3]. Our experimental observations support our previous studies suggesting that μCalcs located within the fibroatheroma cap may be responsible for significantly increasing the risk of cap rupture that precedes myocardial infarction and sudden death. 
    more » « less
  3. Endothelial mechanobiology is a key consideration in the progression of vascular dysfunction, including atherosclerosis. However mechanistic connections between the clinically associated physical stimuli, vessel stiffness and shear stress, and how they interact to modulate plaque progression remain incompletely characterized. Vessel-chip systems are excellent candidates for modeling vascular mechanobiology as they may be engineered from the ground up, guided by the mechanical parameters present in human arteries and veins, to recapitulate key features of the vasculature. Here, we report extensive validation of a vessel-chip model of endothelial yes-associated protein (YAP) mechanobiology, a protein sensitive to both matrix stiffness and shearing forces and, importantly, implicated in atherosclerotic progression. Our model captures the established endothelial mechanoresponse, with endothelial alignment, elongation, reduction of adhesion molecules, and YAP cytoplasmic retention under high laminar shear. Conversely, we observed disturbed morphology, inflammation, and nuclear partitioning under low, high, and high oscillatory shear. Examining targets of YAP transcriptional co-activation, connective tissue growth factor (CTGF) is strongly downregulated by high laminar shear, whereas it is strongly upregulated by low shear or oscillatory flow. Ankyrin repeat domain 1 (ANKRD1) is only upregulated by high oscillatory shear. Verteporfin inhibition of YAP reduced the expression of CTGF but did not affect ANKRD1. Lastly, substrate stiffness modulated the endothelial shear mechanoresponse. Under high shear, softer substrates showed the lowest nuclear localization of YAP whereas stiffer substrates increased nuclear localization. Low shear strongly increased nuclear localization of YAP across stiffnesses. Together, we have validated a model of endothelial mechanobiology and describe a clinically relevant biological connection between matrix stiffness, shear stress, and endothelial activation via YAP mechanobiology. 
    more » « less
  4. Coronary artery disease (CAD), or atherosclerosis, is responsible for nearly a third of all American deaths annually. Detection of plaques and differentiation of plaque stage remains a complicating factor for treatment. Classification of plaque before significant blockage or rupture could inform clinical decisions and prevent mortality. Current detection methods are either nonspecific, slow, or require the use of potentially harmful contrast agents. Recent advances in hyperspectral imaging could be used to detect changes in the autofluorescence of arteries associated with vessel remodeling and subsequent plaque formation and could detect and classify existing lesions. Here, we present data comparing spectral image characteristics of a mouse model designed to undergo vessel remodeling. C57Bl/6 mice underwent ligation of three of four caudal branches of the left common carotid artery (left external carotid, internal carotid, and occipital artery) with the superior thyroid artery left intact under IACUC approved protocol. Vessels were harvested at a variety of timepoints to compare degrees of remodeling, including 4 weeks and 5 months post-surgery. Immediately following harvest, vessels were prepared by longitudinal opening to expose the luminal surface to a 20X objective. A custom inverted microscope (TE-2000, Nikon Instruments) with a Xe arc lamp and thin film tunable filter arrary (Versachrome, Semrock, Inc.) were used to achieve spectral imaging. Excitation scans utilized wavelengths between 340 nm and 550 nm in 5 nm increments. Hyperspectral data were generated and analyzed with custom Matlab scripts and visualized in ENVI. Preliminary data suggest consistent spectral features associated with control and remodeled vessels. © (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only. 
    more » « less
  5. Carotid artery diseases, such as atherosclerosis, are a major cause of death in the United States. Wall shear stresses are known to prompt plaque formation, but there is limited understanding of the complex flow structures underlying these stresses and how they differ in a pre-disposed high-risk patient cohort. A ‘healthy’ and a novel ‘pre-disposed’ carotid artery bifurcation model was determined based on patient-averaged clinical data, where the ‘pre-disposed’ model represents a pathological anatomy. Computational fluid dynamic simulations were performed using a physiological flow based on healthy human subjects. A main hairpin vortical structure in the internal carotid artery sinus was observed, which locally increased instantaneous wall shear stress. In the pre-disposed geometry, this vortical structure starts at an earlier instance in the cardiac flow cycle and persists over a much shorter period, where the second half of the cardiac cycle is dominated by perturbed secondary flow structures and vortices. This coincides with weaker favorable axial pressure gradient peaks over the sinus for the ‘pre-disposed’ geometry. The findings reveal a strong correlation between vortical structures and wall shear stress and imply that an intact internal carotid artery sinus hairpin vortical structure has a physiologically beneficial role by increasing local wall shear stresses. The deterioration of this beneficial vortical structure is expected to play a significant role in atherosclerotic plaque formation. 
    more » « less