Abstract In a collisionless plasma, the energy distribution function of plasma particles can be strongly affected by turbulence. In particular, it can develop a nonthermal power-law tail at high energies. We argue that turbulence with initially relativistically strong magnetic perturbations (magnetization parameterσ≫ 1) quickly evolves into a state with ultrarelativistic plasma temperature but mildly relativistic turbulent fluctuations. We present a phenomenological and numerical study suggesting that in this case, the exponentαin the power-law particle-energy distribution function,f(γ)dγ∝γ−αdγ, depends on magnetic compressibility of turbulence. Our analytic prediction for the scaling exponentαis in good agreement with the numerical results.
more »
« less
Benchmark experiments of the power law parametrization of the effective ion collecting area of a planar Langmuir probe in low temperature plasmas
Abstract For unmagnetized low temperature Ar plasmas with plasma density ranging from 3 × 10 8 to 10 10 cm −3 and an electron temperature of ∼1 eV, the expansion of the ion collecting area of a double-sided planar Langmuir probe with respect to probe bias is experimentally investigated, through a systematic scan of plasma parameters. In accordance with many existing numerical studies, the ion collecting area is found to follow a power law for a sufficiently negative probe bias. Within our experimental conditions, the power law coefficient and exponent have been parameterized as a function of the normalized probe radius and compared with numerical results where qualitatively comparable features are identified. However, numerical results underestimate the power law coefficient while the exponent is overestimated. Our experimental measurements also confirm that ion–neutral collisions play a role in determining the expanded ion collecting area, thus changing values of the power law coefficient and exponent. This work suggests that a power law fit to the ion collecting area must be performed solely based on experimentally obtained data rather than using empirical formulae from simulation results since material and cleanness of the probe, type of working gas, and neutral pressure may also affect the expansion of the ion collecting area, factors which are difficult to model in a numerical simulation. A proper scheme of analyzing an I – V characteristic of a Langmuir probe based on a power law fit is also presented.
more »
« less
- Award ID(s):
- 1804240
- PAR ID:
- 10389243
- Date Published:
- Journal Name:
- Plasma Sources Science and Technology
- Volume:
- 31
- Issue:
- 2
- ISSN:
- 0963-0252
- Page Range / eLocation ID:
- 024001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Radio frequency (RF) driven helicon plasma sources are commonly used for their ability to produce high-density argon plasmas ( n > 10 19 m −3 ) at relatively moderate powers (typical RF power < 2 kW). Typical electron temperatures are <10 eV and typical ion temperatures are <0.6 eV. A newly designed helicon antenna assembly (with concentric, double-layered, fully liquid-cooled RF-transparent windows) operates in steady-state at RF powers up to 10 kW. We report on the dependence of argon plasma density, electron temperature and ion temperature on RF power. At 10 kW, ion temperatures >2 eV in argon plasmas are measured with laser induced fluorescence, which is consistent with a simple volume averaged 0D power balance model. 1D Monte Carlo simulations of the neutral density profile for these plasma conditions show strong neutral depletion near the core and predict neutral temperatures well above room temperatures. The plasmas created in this high-power helicon source (when light ions are employed) are ideally suited for fusion divertor plasma-material interaction studies and negative ion production for neutral beams.more » « less
-
null (Ed.)Abstract Heavy quark production provides a unique probe of the quark-gluon plasma transport properties in heavy ion collisions. Experimental observables like the nuclear modification factor $$R_\mathrm{AA}$$ R AA and elliptic anisotropy $$v_\mathrm{2}$$ v 2 of heavy flavor mesons are sensitive to the heavy quark diffusion coefficient. There now exist an extensive set of such measurements, which allow a data-driven extraction of this coefficient. In this work, we make such an attempt within our recently developed heavy quark transport modeling framework (Langevin-transport with Gluon Radiation, LGR). A question of particular interest is the temperature dependence of the diffusion coefficient, for which we test a wide range of possibility and draw constraints by comparing relevant charm meson data with model results. We find that a relatively strong increase of diffusion coefficient from crossover temperature $$T_c$$ T c toward high temperature is preferred by data. We also make predictions for Bottom meson observables for further experimental tests.more » « less
-
Abstract The effect of target geometry on coating microstructure and morphology is correlated to changes in deposition conditions, plasma characteristics, and film growth during planar and hollow cathode sputtering. The sputtering plasma properties for the two target geometries were characterized via Langmuir probe analysis as a function of power density and Ar pressure to determine the evolution of ion density for each configuration. Films were then synthesized at the low (0.4 W cm−2) and high (1.2 W cm−2) power densities and characterized using x-ray diffraction, scanning electron microscopy, and electron backscatter diffraction to link changes in texturing, morphology, and microstructure with variations in ion density and sputtering deposition conditions caused by target geometry. It was observed that varying target geometry led to an over threefold increase in deposition rate, homologous temperature, and ion density, which altered the morphology and texture of the film without significant changes to the grain size.more » « less
-
Measurements of the dark conductivity and thermoelectric power in hydrogenated amorphous silicon–germanium alloys (a-Si 1- x Ge x :H) reveal that charge transport is not well described by an Arrhenius expression. For alloys with concentrations of Ge below 20%, anomalous hopping conductivity is observed with a power-law exponent of 3/4, while the temperature dependence of the conductivity of alloys with higher Ge concentrations is best fit by a combination of anomalous hopping and a power-law temperature dependence. The latter has been attributed to charge transport via multi-phonon hopping. Corresponding measurements of the Seebeck coefficient reveal that the thermopower is n-type for the purely a-Si:H and a-Ge:H samples but that it exhibits a transition from negative to positive values as a function of the Ge content and temperature. These findings are interpreted in terms of conduction via hopping through either exponential band tail states or dangling bond defects, suggesting that the concept of a mobility edge, accepted for over five decades, may not be necessary to account for charge transport in amorphous semiconductors.more » « less
An official website of the United States government

