skip to main content


Title: Cell-Laden Composite Hydrogel Bioinks with Human Bone Allograft Particles to Enhance Stem Cell Osteogenesis
There is a growing demand for bone graft substitutes that mimic the extracellular matrix properties of the native bone tissue to enhance stem cell osteogenesis. Composite hydrogels containing human bone allograft particles are particularly interesting due to inherent bioactivity of the allograft tissue. Here, we report a novel photocurable composite hydrogel bioink for bone tissue engineering. Our composite bioink is formulated by incorporating human allograft bone particles in a methacrylated alginate formulation to enhance adult human mesenchymal stem cell (hMSC) osteogenesis. Detailed rheology and printability studies confirm suitability of our composite bioinks for extrusion-based 3D bioprinting technology. In vitro studies reveal high cell viability (~90%) for hMSCs up to 28 days of culture within 3D bioprinted composite scaffolds. When cultured within bioprinted composite scaffolds, hMSCs show significantly enhanced osteogenic differentiation as compared to neat scaffolds based on alkaline phosphatase activity, calcium deposition, and osteocalcin expression.  more » « less
Award ID(s):
2044479
NSF-PAR ID:
10389372
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Polymers
Volume:
14
Issue:
18
ISSN:
2073-4360
Page Range / eLocation ID:
3788
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Implantation of stem cells for tissue regeneration faces significant challenges such as immune rejection and teratoma formation. Cell‐free tissue regeneration thus has a potential to avoid these problems. Stem cell derived exosomes do not cause immune rejection or generate malignant tumors. Here, exosomes that can induce osteogenic differentiation of human mesenchymal stem cells (hMSCs) are identified and used to decorate 3D‐printed titanium alloy scaffolds to achieve cell‐free bone regeneration. Specifically, the exosomes secreted by hMSCs osteogenically pre‐differentiated for different times are used to induce the osteogenesis of hMSCs. It is discovered that pre‐differentiation for 10 and 15 days leads to the production of osteogenic exosomes. The purified exosomes are then loaded into the scaffolds. It is found that the cell‐free exosome‐coated scaffolds regenerate bone tissue as efficiently as hMSC‐seeded exosome‐free scaffolds within 12 weeks. RNA‐sequencing suggests that the osteogenic exosomes induce the osteogenic differentiation by using their cargos, including upregulated osteogenic miRNAs (Hsa‐miR‐146a‐5p, Hsa‐miR‐503‐5p, Hsa‐miR‐483‐3p, and Hsa‐miR‐129‐5p) or downregulated anti‐osteogenic miRNAs (Hsa‐miR‐32‐5p, Hsa‐miR‐133a‐3p, and Hsa‐miR‐204‐5p), to activate the PI3K/Akt and MAPK signaling pathways. Consequently, identification of osteogenic exosomes secreted by pre‐differentiated stem cells and the use of them to replace stem cells represent a novel cell‐free bone regeneration strategy.

     
    more » « less
  2. Abstract

    Poly(lactide‐co‐glycolide) (PLGA) has been widely used as a tissue engineering scaffold. However, conventional PLGA scaffolds are not injectable, and do not support direct cell encapsulation, leading to poor cell distribution in 3D. Here, a method for fabricating injectable and intercrosslinkable PLGA microribbon‐based macroporous scaffolds as 3D stem cell niche is reported. PLGA is first fabricated into microribbon‐shape building blocks with tunable width using microcontact printing, then coated with fibrinogen to enhance solubility and injectability using aqueous solution. Upon mixing with thrombin, firbornogen‐coated PLGA microribbons can intercrosslink into 3D scaffolds. When subject to cyclic compression, PLGA microribbon scaffolds exhibit great shock‐absorbing capacity and return to their original shape, while conventional PLGA scaffolds exhibit permanent deformation after one cycle. Using human mesenchymal stem cells (hMSCs) as a model cell type, it is demonstrated that PLGA μRB scaffolds support homogeneous cell encapsulation, and robust cell spreading and proliferation in 3D. After 28 days of culture in osteogenic medium, hMSC‐seeded PLGA μRB scaffolds exhibit an increase in compressive modulus and robust bone formation as shown by staining of alkaline phosphatase, mineralization, and collagen. Together, the results validate PLGA μRBs as a promising injectable, macroporous, non‐hydrogel‐based scaffold for cell delivery and tissue regeneration applications.

     
    more » « less
  3. Abstract

    Human mesenchymal stem cells (hMSCs) have great potential in cell-based therapies for tissue engineering and regenerative medicine due to their self-renewal and multipotent properties. Recent studies indicate that Notch1-Dll4 signaling is an important pathway in regulating osteogenic differentiation of hMSCs. However, the fundamental mechanisms that govern osteogenic differentiation are poorly understood due to a lack of effective tools to detect gene expression at single cell level. Here, we established a double-stranded locked nucleic acid (LNA)/DNA (LNA/DNA) nanobiosensor for gene expression analysis in single hMSC in both 2D and 3D microenvironments. We first characterized this LNA/DNA nanobiosensor and demonstrated the Dll4 mRNA expression dynamics in hMSCs during osteogenic differentiation. By incorporating this nanobiosensor with live hMSCs imaging during osteogenic induction, we performed dynamic tracking of hMSCs differentiation and Dll4 mRNA gene expression profiles of individual hMSC during osteogenic induction. Our results showed the dynamic expression profile of Dll4 during osteogenesis, indicating the heterogeneity of hMSCs during this dynamic process. We further investigated the role of Notch1-Dll4 signaling in regulating hMSCs during osteogenic differentiation. Pharmacological perturbation is applied to disrupt Notch1-Dll4 signaling to investigate the molecular mechanisms that govern osteogenic differentiation. In addition, the effects of Notch1-Dll4 signaling on hMSCs spheroids differentiation were also investigated. Our results provide convincing evidence supporting that Notch1-Dll4 signaling is involved in regulating hMSCs osteogenic differentiation. Specifically, Notch1-Dll4 signaling is active during osteogenic differentiation. Our results also showed that Dll4 is a molecular signature of differentiated hMSCs during osteogenic induction. Notch inhibition mediated osteogenic differentiation with reduced Alkaline Phosphatase (ALP) activity. Lastly, we elucidated the role of Notch1-Dll4 signaling during osteogenic differentiation in a 3D spheroid model. Our results showed that Notch1-Dll4 signaling is required and activated during osteogenic differentiation in hMSCs spheroids. Inhibition of Notch1-Dll4 signaling mediated osteogenic differentiation and enhanced hMSCs proliferation, with increased spheroid sizes. Taken together, the capability of LNA/DNA nanobiosensor to probe gene expression dynamics during osteogenesis, combined with the engineered 2D/3D microenvironment, enables us to study in detail the role of Notch1-Dll4 signaling in regulating osteogenesis in 2D and 3D microenvironment. These findings will provide new insights to improve cell-based therapies and organ repair techniques.

     
    more » « less
  4. Functional repair of osteochondral (OC) tissue remains challenging because the transition from bone to cartilage presents gradients in biochemical and physical properties necessary for joint function. Osteochondral regeneration requires strategies that restore the spatial composition and organization found in the native tissue. Several biomaterial approaches have been developed to guide chondrogenic and osteogenic differentiation of human mesenchymal stem cells (hMSCs). These strategies can be combined with 3D printing, which has emerged as a useful tool to produce tunable, continuous scaffolds functionalized with bioactive cues. However, functionalization often includes one or more post-fabrication processing steps, which can lead to unwanted side effects and often produce biomaterials with homogeneously distributed chemistries. To address these challenges, surface functionalization can be achieved in a single step by solvent-cast 3D printing peptide-functionalized polymers. Peptide-poly(caprolactone) (PCL) conjugates were synthesized bearing hyaluronic acid (HA)-binding (HAbind–PCL) or mineralizing (E3–PCL) peptides, which have been shown to promote hMSC chondrogenesis or osteogenesis, respectively. This 3D printing strategy enables unprecedented control of surface peptide presentation and spatial organization within a continuous construct. Scaffolds presenting both cartilage-promoting and bone-promoting peptides had a synergistic effect that enhanced hMSC chondrogenic and osteogenic differentiation in the absence of differentiation factors compared to scaffolds without peptides or only one peptide. Furthermore, multi-peptide organization significantly influenced hMSC response. Scaffolds presenting HAbind and E3 peptides in discrete opposing zones promoted hMSC osteogenic behavior. In contrast, presenting both peptides homogeneously throughout the scaffolds drove hMSC differentiation towards a mixed population of articular and hypertrophic chondrocytes. These significant results indicated that hMSC behavior was driven by dual-peptide presentation and organization. The downstream potential of this platform is the ability to fabricate biomaterials with spatially controlled biochemical cues to guide functional tissue regeneration without the need for differentiation factors. 
    more » « less
  5. Delivering stem/progenitor cells via a degradable synthetic membrane to devitalized allogenic tissue graft surfaces presents a promising allograft‐mediated tissue regeneration strategy. However, balancing degradability and bioactivity of the synthetic membrane with physical characteristics demanded for successful clinical translation is challenging. Here, well‐integrated composites of hydroxyapatite (HA) and amphiphilic poly(lactide‐co‐glycolide)‐b‐poly(ethylene glycol)‐b‐poly(lactide‐co‐glycolide) (PELGA) with tunable degradation rates are designed that stiffen upon hydration and exhibit excellent shape recovery ability at body temperature for efficiently delivering skeletal progenitor cells around bone grafts. Unlike conventional degradable polymers that weaken upon wetting, these amphiphilic composites stiffen upon hydration as a result of enhanced polyethylene glycol (PEG) crystallization. HA‐PELGA composite membranes support the attachment, proliferation, and osteogenesis of rat periosteum‐derived cells in vitro, as well as the facile transfer of confluent cell sheets of green fluorescent protein‐labeled bone marrow stromal cells. With efficient shape memory behaviors around physiological temperature, the composite membranes can be programmed with a permanent tubular configuration, deformed into a flat temporary shape desired for cell seeding/cell sheet transfer, and triggered to wrap around a femoral bone allograft upon 37 °C saline rinse and subsequently stiffen. These properties combined make electrospun HA‐PELGA promising smart synthetic periosteal membranes for augmenting allograft healing.

     
    more » « less