skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Preserving US microbe collections sparks future discoveries
Summary Collections of micro-organisms are a crucial element of life science research infrastructure but are vulnerable to loss and damage caused by natural or man-made disasters, the untimely death or retirement of personnel, or the loss of research funding. Preservation of biological collections has risen in priority due to a new appreciation for discoveries linked to preserved specimens, emerging hurdles to international collecting and decreased funding for new collecting. While many historic collections have been lost, several have been preserved, some with dramatic rescue stories. Rescued microbes have been used for discoveries in areas of health, biotechnology and basic life science. Suggestions for long-term planning for microbial stocks are listed, as well as inducements for long-term preservation.  more » « less
Award ID(s):
1755220 1756217
PAR ID:
10389434
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Applied Microbiology
Volume:
129
Issue:
2
ISSN:
1364-5072
Page Range / eLocation ID:
p. 162-174
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Long‐term datasets are needed to evaluate temporal patterns in wildlife disease burdens, but historical data on parasite abundance are extremely rare. For more than a century, natural history collections have been accumulating fluid‐preserved specimens, which should contain the parasites infecting the host at the time of its preservation. However, before this unique data source can be exploited, we must identify the artifacts that are introduced by the preservation process. Here, we experimentally address whether the preservation process alters the degree to which metazoan parasites are detectable in fluid‐preserved fish specimens when using visual parasite detection techniques. We randomly assigned fish of three species (Gadus chalcogrammus, Thaleichthys pacificus, and Parophrys vetulus) to two treatments. In the first treatment, fish were preserved according to the standard procedures used in ichthyological collections. Immediately after the fluid‐preservation process was complete, we performed parasitological dissection on those specimens. The second treatment was a control, in which fish were dissected without being subjected to the fluid‐preservation process. We compared parasite abundance between the two treatments. Across 298 fish individuals and 59 host–parasite pairs, we found few differences between treatments, with 24 of 27 host–parasite pairs equally abundant between the two treatments. Of these, one pair was significantly more abundant in the preservation treatment than in the control group, and two pairs were significantly less abundant in the preservation treatment than in the control group. Our data suggest that the fluid‐preservation process does not have a substantial effect on the detectability of metazoan parasites. This study addresses only the effects of the fixation and preservation process; long‐term experiments are needed to address whether parasite detectability remains unchanged in the months, years, and decades of storage following preservation. If so, ecologists will be able to reconstruct novel, long‐term datasets on parasite diversity and abundance over the past century or more using fluid‐preserved specimens from natural history collections. 
    more » « less
  2. Freshwater mussels are important indicators of the overall health of their environment but have suffered declines that have been attributed to factors such as habitat degradation, a loss of fish hosts, climate change, and excessive nutrient inputs. The loss of mussel biodiversity can negatively impact freshwater ecosystems such that understanding the mussel’s gut microbiome has been identified as a priority topic for developing conservation strategies. In this study, we determine whether ethanol-stored specimens of freshwater mussels can yield representative information about their gut microbiomes such that changes in the microbiome through time could potentially be determined from museum mussel collections. A short-term preservation experiment using the invasive clam Corbicula fluminea was used to validate the use of ethanol as a method for storing the bivalve microbiome, and the gut microbiomes of nine native mussel species that had been preserved in ethanol for between 2 and 9 years were assessed. We show that ethanol preservation is a valid storage method for bivalve specimens in terms of maintaining an effective sequencing depth and the richness of their gut bacterial assemblages and provide further insight into the gut microbiomes of the invasive clam C. fluminea and nine species of native mussels. From this, we identify a “core” genus of bacteria (Romboutsia) that is potentially common to all freshwater bivalve species studied. These findings support the potential use of ethanol-preserved museum specimens to examine patterns in the gut microbiomes of freshwater mussels over long periods. 
    more » « less
  3. Coral reefs are declining worldwide primarily because of bleaching and subsequent mortality resulting from thermal stress. Currently, extensive efforts to engage in more holistic research and restoration endeavors have considerably expanded the techniques applied to examine coral samples. Despite such advances, coral bleaching and restoration studies are often conducted within a specific disciplinary focus, where specimens are collected, preserved, and archived in ways that are not always conducive to further downstream analyses by specialists in other disciplines. This approach may prevent the full utilization of unexpended specimens, leading to siloed research, duplicative efforts, unnecessary loss of additional corals to research endeavors, and overall increased costs. A recent US National Science Foundation-sponsored workshop set out to consolidate our collective knowledge across the disciplines of Omics, Physiology, and Microscopy and Imaging regarding the methods used for coral sample collection, preservation, and archiving. Here, we highlight knowledge gaps and propose some simple steps for collecting, preserving, and archiving coral-bleaching specimens that can increase the impact of individual coral bleaching and restoration studies, as well as foster additional analyses and future discoveries through collaboration. Rapid freezing of samples in liquid nitrogen or placing at −80 °C to −20 °C is optimal for most Omics and Physiology studies with a few exceptions; however, freezing samples removes the potential for many Microscopy and Imaging-based analyses due to the alteration of tissue integrity during freezing. For Microscopy and Imaging, samples are best stored in aldehydes. The use of sterile gloves and receptacles during collection supports the downstream analysis of host-associated bacterial and viral communities which are particularly germane to disease and restoration efforts. Across all disciplines, the use of aseptic techniques during collection, preservation, and archiving maximizes the research potential of coral specimens and allows for the greatest number of possible downstream analyses. 
    more » « less
  4. Thanks to substantial support for biodiversity data mobilization in recent decades, billions of occurrence records are openly available, documenting life on Earth and enabling timely research, awareness raising, and policy-making. Initiatives across local to global scales have been separately funded to serve different, yet often overlapping audiences of data users, and have developed a variety of platforms and infrastructures to meet the needs of these audiences. The independent progress of biodiversity data providers has led to innovations as well as challenges for the community at large as we move towards connecting and linking a diversity of information from disparate sources as Digital Extended Specimens (DES). Recognizing a need for deeper and more frequent opportunities for communication and collaboration across the globe, an ad-hoc group of representatives of various international, national, and regional organizations have been meeting virtually since 2020 to provide a forum for updates, announcements, and shared progress. This group is provisionally named International Partners for the Digital Extended Specimen (IPDES), and is guided by these four concepts: Biodiversity, Connection, Knowledge and Agency. Participants in IPDES include representatives of the Global Biodiversity Information Facility (GBIF), Integrated Digitized Biocollections (iDigBio), American Institute of Biological Sciences (AIBS), Biodiversity Collections Network (BCoN), Natural Science Collections Alliance (NSCA), Distributed System of Scientific Collections (DiSSCo), Atlas of Living Australia (ALA), Biodiversity Information Standards (TDWG), Society for the Preservation of Natural History Collections (SPNHC), National Specimen Information Infrastructure of China (NSII), and South African National Biodiversity Institute (SANBI), as well as individuals involved with biodiversity informatics initiatives, natural science collections, museums, herbaria, and universities. Our global partners group strives to increase representation from around the globe as we aim to enable research that contributes to novel discoveries and addresses the societal challenges leading to the biodiversity crisis. Our overarching mission is to expand on the community-driven successes to connect biodiversity data and knowledge through coordination of a globally integrated network of stakeholders to enable an extensible technical and social infrastructure of data, tools, and working practices in support of our vision. The main work of our group thus far includes publishing a paper on the Digital Extended Specimen (Hardisty et al. 2022), organizing and hosting an array of activities at conferences, and asynchronous online work and forum-based exchanges. We aim to advance discussion on topics of broad interest to our community such as social and technical capacity building, broadening participation, expanding social and data networks, improving data models and building a backbone for the DES, and identifying international funding solutions. This presentation will highlight some of these activities and detail progress towards a roadmap for the development of the human network and technical infrastructure necessary to support the DES. It provides an opportunity for feedback from and engagement by stakeholder communities such as TDWG and other initiatives with a focus on data standards and biodiversity informatics, as we solidify our plans for the future in support of integrated and interconnected biodiversity data and credit for those doing the work. 
    more » « less
  5. Many discoveries in the life sciences have been made using material from living stock collections. These collections provide a uniform and stable supply of living organisms and related materials that enhance the reproducibility of research and minimize the need for repetitive calibration. While collections differ in many ways, they all require expertise in maintaining living organisms and good logistical systems for keeping track of stocks and fulfilling requests for specimens. Here, we review some of the contributions made by living stock collections to research across all branches of the tree of life, and outline the challenges they face. 
    more » « less