skip to main content


Title: Pedigree simulations reveal that maternity assignment is reliable in populations with conspecific brood parasitism, incomplete parental sampling and kin structure
Abstract

Modern genetic parentage methods reveal that alternative reproductive strategies are common in both males and females. Under ideal conditions, genetic methods accurately connect the parents to offspring produced by extra‐pair matings or conspecific brood parasitism. However, some breeding systems and sampling scenarios present significant complications for accurate parentage assignment. We used simulated genetic pedigrees to assess the reliability of parentage assignment for a series of challenging sampling regimes that reflect realistic conditions for many brood‐parasitic birds: absence of genetic samples from sires, absence of samples from brood parasites and female kin‐structured populations. Using 18 microsatellite markers and empirical allele frequencies from two populations of a conspecific brood parasite, the wood duck (Aix sponsa), we simulated brood parasitism and determined maternity using two widely used programs,cervusandcolony. Errors in assignment were generally modest for most sampling scenarios but differed by program:cervussuffered from false assignment of parasitic offspring, whereascolonysometimes failed to assign offspring to their known mothers. Notably,colonywas able to accurately infer unsampled parents. Reducing the number of markers (nine loci rather than 18) caused the assignment error to slightly worsen withcolonybut balloon withcervus. One potential error with important biological implications was rare in all cases—few nesting females were incorrectly excluded as the mother of their own offspring, an error that could falsely indicate brood parasitism. We consider the implications of our findings for both a retrospective assessment of previous studies and suggestions for best practices for future studies.

 
more » « less
NSF-PAR ID:
10389529
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology Resources
Volume:
22
Issue:
1
ISSN:
1755-098X
Page Range / eLocation ID:
p. 180-198
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sex allocation theory predicts that mothers should bias investment in offspring toward the sex that yields higher fitness returns; one such bias may be a skewed offspring sex ratio. Sex allocation is well-studied in birds with cooperative breeding systems, with theory on local resource enhancement and production of helpers at the nest, but little theoretical or empirical work has focused on birds with brood parasitic breeding systems. Wood ducks (Aix sponsa) are a conspecific brood parasite, and rates of parasitism appear to increase with density. Because female wood ducks show high natal philopatry and nest sites are often limiting, local resource competition (LRC) theory predicts that females should overproduce male offspring—the dispersing sex—when competition (density) is high. However, the unique features of conspecific brood parasitism generate alternative predictions from other sex allocation theory, which we develop and test here. We experimentally manipulated nesting density of female wood ducks in 4 populations from 2013 to 2016, and analyzed the resulting sex allocation of >2000 ducklings. In contrast to predictions we did not find overproduction of male offspring by females in high-density populations, females in better condition, or parasitic females; modest support for LRC was found in overproduction of only female parasitic offspring with higher nest box availability. The lack of evidence for sex ratio biases, as expected for LRC and some aspects of brood parasitism, could reflect conflicting selection pressures from nest competition and brood parasitism, or that mechanisms of adaptive sex ratio bias are not possible.

     
    more » « less
  2. Abstract

    Intraspecific variation in animal mating systems can have important implications for ecological, evolutionary and demographic processes in wild populations. For example, patterns of mating can impact social structure, dispersal, effective population size and inbreeding. However, few species have been studied in sufficient detail to elucidate mating system plasticity and its dependence on ecological and demographic factors. Southern elephant seals (Mirounga leonina) have long been regarded as a textbook example of a polygynous mating system, with dominant ‘beachmaster’ males controlling harems of up to several hundred females. However, behavioural and genetic studies have uncovered appreciable geographic variation in the strength of polygyny among elephant seal populations. We, therefore, used molecular parentage analysis to investigate patterns of parentage in a small satellite colony of elephant seals at the South Shetland Islands. We hypothesised that dominant males would be able to successfully monopolise the relatively small numbers of females present in the colony, leading to relatively high levels of polygyny. A total of 424 individuals (comprising 33 adult males, 101 adult females and 290 pups) sampled over 8 years were genotyped at 20 microsatellites and reproductive success was analysed by genetically assigning parents. Paternity could only be assigned to 31 pups (10.7%), despite our panel of genetic markers being highly informative and the genotyping error rate being very low. The strength of inferred polygyny was weak in comparison to previous genetic studies of the same species, with the most successful male fathering only seven pups over the entire course of our study. Our results show that, even in a species long regarded as a model for extreme polygyny, male reproductive skew can vary substantially among populations.

     
    more » « less
  3. Abstract

    Defending offspring incurs temporal and energetic costs and can be dangerous for the parents. Accordingly, the intensity of this costly behavior should reflect the perceived risk to the reproductive output. When facing costly brood parasitism by brown‐headed cowbirds (Molothrus ater), where cowbirds lay eggs in heterospecific nests and cause the hosts to care for their young, yellow warblers (Setophaga petechia) use referential “seet” calls to warn their mates of the parasitic danger. Yellow warblers of both sexes produce this call only in response to cowbirds or seet‐calling conspecifics. Seet calls are mainly produced during the laying and incubation stages of breeding, when risk of brood parasitism is highest, rather than during the nestling stage. On the other hand, general alarm calls (chips) are produced throughout the nesting cycle and are also used in conspecific interactions unrelated to nesting. We hypothesized that context shapes responses prior to breeding as well, such that yellow warblers without a mate and active nest would be less likely to respond to playbacks that simulate brood parasitism risk. To test this hypothesis, we presented playbacks of two nest threats, cowbirds (brood parasite) and blue jays (Cyanocitta cristata; nest predator), on territories of unmated male warblers (unpaired) and male warblers with a known mate (paired). We found that unpaired males were unresponsive toward playbacks indicating nest threats, whereas paired males were significantly more aggressive and vocal toward these playbacks compared to control playbacks. However, both paired and unpaired males were vocally responsive toward chip calls, which are informative for males regardless of pairing status. Male yellow warblers appear to adjust their responses during the earliest stages of breeding depending on the contextual relevance of specific threat stimuli, and together with prior studies, our work further supports that referential seet calls are associated with stage‐specific risk of brood parasitism.

     
    more » « less
  4. Male orangutans exhibit bimaturism—two mature morphs—flanged and unflanged males. Flanged males are larger, have cheek pads (flanges) and large throat sacs, and produce long calls. Previous orangutan paternity studies found variation between the reproductive success of each morph and in the degrees of reproductive skew. However, these studies were limited by a lack of behavioral maternity data, the inclusion of ex-captive orangutans, and/or the presence of feeding stations. Here we present the first paternity data from completely wild orangutans with known mothers. We hypothesized that (1) flanged males would have higher reproductive success than unflanged males due to flanged male dominance and female preference and (2) a single male would not monopolize paternity due to the temporal and spatial distribution of fecund females. We used fecal samples collected in Gunung Palung National Park from 2008-2019 to genotype orangutans (13 offspring born 2002-2015, their 10 mothers, and 19 candidate sires) using 12 microsatellites. MICROCHECKER 2.2.3 and CERVUS 3.0 were used to confirm the suitability of the microsatellite panel, fidelity of individual identities, and genetic maternity. Paternity analysis was performed with both CERVUS 3.0 and COLONY 2.0.6.7. We were able to identify paternity for six offspring. Four flanged males sired five offspring, and one sire’s morph was unknown at the time of conception. We found that flanged males have higher reproductive success and that females are not monopolizable in this completely wild setting. We discuss the implications of all published orangutan paternity results for understanding bimaturism in orangutans. 
    more » « less
  5. Abstract

    Insect societies vary greatly in their social structure, mating biology, and life history. Polygyny, the presence of multiple reproductive queens in a single colony, and polyandry, multiple mating by females, both increase the genetic variability in colonies of eusocial organisms, resulting in potential reproductive conflicts. The co-occurrence of polygyny and polyandry in a single species is rarely observed across eusocial insects, and these traits have been found to be negatively correlated in ants.Acromyrmexleaf-cutting ants are well-suited for investigating the evolution of complex mating strategies because both polygyny and polyandry co-occur in this genus. We used microsatellite markers and parentage inference in five South AmericanAcromyrmexspecies to study how different selective pressures influence the evolution of polygyny and polyandry. We show thatAcromyrmexspecies exhibit independent variation in mating biology and social structure, and polygyny and polyandry are not necessarily negatively correlated within genera. One species,Acromyrmex lobicornis, displays a significantly lower mating frequency compared to others, while another species,A. lundii, appears to have reverted to obligate monogyny. These variations appear to have a small impact on average intra-colonial relatedness, although the biological significance of such a small effect size is unclear. All species show significant reproductive skew between patrilines, but there was no significant difference in reproductive skew between any of the sampled species. We find that the evolution of social structure and mating biology appear to follow independent evolutionary trajectories in different species. Finally, we discuss the evolutionary implications that mating biology and social structure have on life history evolution inAcromyrmexleaf-cutting ants.

    Significance statement

    Many species of eusocial insects have colonies with multiple queens (polygyny), or queens mating with multiple males (polyandry). Both behaviors generate potentially beneficial genetic diversity in ant colonies as well as reproductive conflict. The co-occurrence of both polygyny and polyandry in a single species is only known from few ant species. Leaf-cutting ants have both multi-queen colonies and multiply mated queens, providing a well-suited system for studying the co-evolutionary dynamics between mating behavior and genetic diversity in colonies of eusocial insects. We used microsatellite markers to infer the socio-reproductive behavior in five South American leaf-cutter ant species. We found that variation in genetic diversity in colonies was directly associated with the mating frequencies of queens, but not with the number of queens in a colony. We suggest that multi-queen nesting and mating frequency evolve independently of one another, indicating that behavioral and ecological factors other than genetic diversity contribute to the evolution of complex mating behaviors in leaf-cutting ants.

     
    more » « less