We present the first unquenched lattice-QCD calculation of the form factors for the decay
This paper examined the effect of Si addition on the cracking resistance of Inconel 939 alloy after laser additive manufacturing (AM) process. With the help of CALculation of PHAse Diagrams (CALPHAD) software Thermo-Calc, the amounts of specific elements (C, B, and Zr) in liquid phase during solidification, cracking susceptibility coefficients (CSC) and cracking criterion based on
- Award ID(s):
- 1946231
- Publication Date:
- NSF-PAR ID:
- 10389610
- Journal Name:
- MRS Communications
- Volume:
- 12
- Issue:
- 5
- Page Range or eLocation-ID:
- p. 844-849
- ISSN:
- 2159-6867
- Publisher:
- Cambridge University Press (CUP)
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract at nonzero recoil. Our analysis includes 15 MILC ensembles with$$B\rightarrow D^*\ell \nu $$ flavors of asqtad sea quarks, with a strange quark mass close to its physical mass. The lattice spacings range from$$N_f=2+1$$ fm down to 0.045 fm, while the ratio between the light- and the strange-quark masses ranges from 0.05 to 0.4. The valence$$a\approx 0.15$$ b andc quarks are treated using the Wilson-clover action with the Fermilab interpretation, whereas the light sector employs asqtad staggered fermions. We extrapolate our results to the physical point in the continuum limit using rooted staggered heavy-light meson chiral perturbation theory. Then we apply a model-independent parametrization to extend the form factors to the full kinematic range. With this parametrization we perform a joint lattice-QCD/experiment fit using several experimental datasets to determine the CKM matrix element . We obtain$$|V_{cb}|$$ . The first error is theoretical, the second comes from experiment and the last one includes electromagnetic and electroweak uncertainties, with an overall$$\left| V_{cb}\right| = (38.40 \pm 0.68_{\text {th}} \pm 0.34_{\text {exp}} \pm 0.18_{\text {EM}})\times 10^{-3}$$ , which illustrates the tensions between the experimental data sets, and between theory and experiment. This result is inmore »$$\chi ^2\text {/dof} = 126/84$$ -
Abstract Recent spectacular advances by AI programs in 3D structure predictions from protein sequences have revolutionized the field in terms of accuracy and speed. The resulting “folding frenzy” has already produced predicted protein structure databases for the entire human and other organisms’ proteomes. However, rapidly ascertaining a predicted structure’s reliability based on measured properties in solution should be considered. Shape-sensitive hydrodynamic parameters such as the diffusion and sedimentation coefficients (
,$${D_{t(20,w)}^{0}}$$ ) and the intrinsic viscosity ([$${s_{{\left( {{20},w} \right)}}^{{0}} }$$ η ]) can provide a rapid assessment of the overall structure likeliness, and SAXS would yield the structure-related pair-wise distance distribution functionp (r ) vs.r . Using the extensively validated UltraScan SOlution MOdeler (US-SOMO) suite, a database was implemented calculating from AlphaFold structures the corresponding ,$${D_{t(20,w)}^{0}}$$ , [$${s_{{\left( {{20},w} \right)}}^{{0}} }$$ η ],p (r ) vs.r , and other parameters. Circular dichroism spectra were computed using the SESCA program. Some of AlphaFold’s drawbacks were mitigated, such as generating whenever possible a protein’s mature form. Others, like the AlphaFold direct applicability to single-chain structures only, the absence of prosthetic groups, or flexibility issues, are discussed. Overall, this implementation of the US-SOMO-AF database should already aid in rapidly evaluating the consistency in solution of a relevant portion of AlphaFold predicted protein structures. -
Abstract Fix a positive integer
n and a finite field . We study the joint distribution of the rank$${\mathbb {F}}_q$$ , the$${{\,\mathrm{rk}\,}}(E)$$ n -Selmer group , and the$$\text {Sel}_n(E)$$ n -torsion in the Tate–Shafarevich group Equation missing<#comment/>asE varies over elliptic curves of fixed height over$$d \ge 2$$ . We compute this joint distribution in the large$${\mathbb {F}}_q(t)$$ q limit. We also show that the “largeq , then large height” limit of this distribution agrees with the one predicted by Bhargava–Kane–Lenstra–Poonen–Rains. -
Abstract We present a proof of concept for a spectrally selective thermal mid-IR source based on nanopatterned graphene (NPG) with a typical mobility of CVD-grown graphene (up to 3000
), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of an$$\hbox {cm}^2\,\hbox {V}^{-1}\,\hbox {s}^{-1}$$ in-plane electric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from to 12$$\lambda =3$$ m by adjusting the size of and distance between the circular holes in a hexagonal or square lattice structure. Most importantly, the LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming state-of-the-art pristine graphene light sources operating in the near-infrared by at least a factor of 100. According to our COMSOL calculations, a maximum emission power per area of$$\upmu$$ W/$$11\times 10^3$$ at$$\hbox {m}^2$$ K for a bias voltage of$$T=2000$$ V is achieved by controlling the temperature of the hot electrons through the Joule heating. By generalizing Planck’s theory to any grey body and derivingmore »$$V=23$$ -
Abstract The genericity of Arnold diffusion in the analytic category is an open problem. In this paper, we study this problem in the following
a priori unstable Hamiltonian system with a time-periodic perturbation where , withn ,d ⩾ 1,V i are Morse potentials, andɛ is a small non-zero parameter. The unperturbed Hamiltonian is not necessarily convex, and the induced inner dynamics does not need to satisfy a twist condition. Using geometric methods we prove that Arnold diffusion occurs for generic analytic perturbationsH 1. Indeed, the set of admissibleH 1isC ω dense andC 3open (a fortiori ,C ω open). Our perturbative technique for the genericity is valid in theC k topology for allk ∈ [3, ∞) ∪ {∞,ω }.