skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Low microbiome diversity in threatened amphibians from two biodiversity hotspots
Abstract Microbial diversity positively influences community resilience of the host microbiome. However, extinction risk factors such as habitat specialization, narrow environmental tolerances, and exposure to anthropogenic disturbance may homogenize host-associated microbial communities critical for stress responses including disease defense. In a dataset containing 43 threatened and 90 non-threatened amphibian species across two biodiversity hotspots (Brazil’s Atlantic Forest and Madagascar), we found that threatened host species carried lower skin bacterial diversity, after accounting for key environmental and host factors. The consistency of our findings across continents suggests the broad scale at which low bacteriome diversity may compromise pathogen defenses in species already burdened with the threat of extinction.  more » « less
Award ID(s):
2225683 2303908 1947684
NSF-PAR ID:
10389666
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Date Published:
Journal Name:
Animal Microbiome
Volume:
4
Issue:
1
ISSN:
2524-4671
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cryptic ecologies, the Wallacean Shortfall of undocumented species’ geographical ranges and the Linnaean Shortfall of undescribed diversity, are all major barriers to conservation assessment. When these factors overlap with drivers of extinction risk, such as insular distributions, the number of threatened species in a region or clade may be underestimated, a situation we term ‘cryptic extinction risk’. The genusLepidodactylusis a diverse radiation of insular and arboreal geckos that occurs across the western Pacific. Previous work onLepidodactylusshowed evidence of evolutionary displacement around continental fringes, suggesting an inherent vulnerability to extinction from factors such as competition and predation. We sought to (1) comprehensively review status and threats, (2) estimate the number of undescribed species, and (3) estimate extinction risk in data deficient and candidate species, inLepidodactylus. From our updated IUCN Red List assessment, 60% of the 58 recognized species are threatened (n = 15) or Data Deficient (n = 21), which is higher than reported for most other lizard groups. Species from the smaller and isolated Pacific islands are of greatest conservation concern, with most either threatened or Data Deficient, and all particularly vulnerable to invasive species. We estimated 32 undescribed candidate species and linear modelling predicted that an additional 18 species, among these and the data deficient species, are threatened with extinction. Focusing efforts to resolve the taxonomy and conservation status of key taxa, especially on small islands in the Pacific, is a high priority for conserving this remarkably diverse, yet poorly understood, lizard fauna. Our data highlight how cryptic ecologies and cryptic diversity combine and lead to significant underestimation of extinction risk.

     
    more » « less
  2. Abstract Fish are the most diverse and widely distributed vertebrates, yet little is known about the microbial ecology of fishes nor the biological and environmental factors that influence fish microbiota. To identify factors that explain microbial diversity patterns in a geographical subset of marine fish, we analyzed the microbiota (gill tissue, skin mucus, midgut digesta and hindgut digesta) from 101 species of Southern California marine fishes, spanning 22 orders, 55 families and 83 genera, representing ~25% of local marine fish diversity. We compare alpha, beta and gamma diversity while establishing a method to estimate microbial biomass associated with these host surfaces. We show that body site is the strongest driver of microbial diversity while microbial biomass and diversity is lowest in the gill of larger, pelagic fishes. Patterns of phylosymbiosis are observed across the gill, skin and hindgut. In a quantitative synthesis of vertebrate hindguts (569 species), we also show that mammals have the highest gamma diversity when controlling for host species number while fishes have the highest percent of unique microbial taxa. The composite dataset will be useful to vertebrate microbiota researchers and fish biologists interested in microbial ecology, with applications in aquaculture and fisheries management. 
    more » « less
  3. Skin microbial communities are an essential part of host health and can play a role in mitigating disease. Host and environmental factors can shape and alter these microbial communities and, therefore, we need to understand to what extent these factors influence microbial communities and how this can impact disease dynamics. Microbial communities have been studied in amphibian systems due to skin microbial communities providing some resistance to the amphibian chytrid fungus, Batrachochytrium dendrobatidis . However, we are only starting to understand how host and environmental factors shape these communities for amphibians. In this study, we examined whether amphibian skin bacterial communities differ among host species, host infection status, host developmental stage, and host habitat. We collected skin swabs from tadpoles and adults of three Ranid frog species ( Lithobates spp.) at the Mianus River Gorge Preserve in Bedford, New York, USA, and used 16S rRNA gene amplicon sequencing to determine bacterial community composition. Our analysis suggests amphibian skin bacterial communities change across host developmental stages, as has been documented previously. Additionally, we found that skin bacterial communities differed among Ranid species, with skin communities on the host species captured in streams or bogs differing from the communities of the species captured on land. Thus, habitat use of different species may drive differences in host-associated microbial communities for closely-related host species. 
    more » « less
  4. Abstract Comprehensive assessments of species’ extinction risks have documented the extinction crisis 1 and underpinned strategies for reducing those risks 2 . Global assessments reveal that, among tetrapods, 40.7% of amphibians, 25.4% of mammals and 13.6% of birds are threatened with extinction 3 . Because global assessments have been lacking, reptiles have been omitted from conservation-prioritization analyses that encompass other tetrapods 4–7 . Reptiles are unusually diverse in arid regions, suggesting that they may have different conservation needs 6 . Here we provide a comprehensive extinction-risk assessment of reptiles and show that at least 1,829 out of 10,196 species (21.1%) are threatened—confirming a previous extrapolation 8 and representing 15.6 billion years of phylogenetic diversity. Reptiles are threatened by the same major factors that threaten other tetrapods—agriculture, logging, urban development and invasive species—although the threat posed by climate change remains uncertain. Reptiles inhabiting forests, where these threats are strongest, are more threatened than those in arid habitats, contrary to our prediction. Birds, mammals and amphibians are unexpectedly good surrogates for the conservation of reptiles, although threatened reptiles with the smallest ranges tend to be isolated from other threatened tetrapods. Although some reptiles—including most species of crocodiles and turtles—require urgent, targeted action to prevent extinctions, efforts to protect other tetrapods, such as habitat preservation and control of trade and invasive species, will probably also benefit many reptiles. 
    more » « less
  5. Abstract Long-term studies of animal microbiomes under natural conditions are valuable for understanding the effects of host demographics and environmental factors on host-associated microbial communities, and how those effects interact and shift over time. We examined how the cloacal microbiome of wild Sceloporus virgatus (the striped plateau lizard) varies under natural conditions in a multi-year study. Cloacal swabs were collected from wild-caught lizards across their entire active season and over three years in southeastern Arizona, USA. Analyses of 16S rRNA data generated on the Illumina platform revealed that cloacal microbiomes of S. virgatus vary as a function of season, sex, body size, and reproductive state, and do so independently of one another. Briefly, microbial diversity was lowest in both sexes during the reproductive season, was higher in females than in males, and was lowest in females when they were vitellogenic, and microbiome composition varied across seasons, sexes, and sizes. The pattern of decreased diversity during reproductive periods with increased sociality is surprising, as studies in other systems often suggest that microbial diversity generally increases with sociality. The cloacal microbiome was not affected significantly by hibernation and was relatively stable from year to year. This study highlights the importance of long term, wide-scale microbiome studies for capturing accurate perspectives on microbiome diversity and composition in animals. It also serves as a warning for comparisons of microbiomes across species, as each may be under a different suite of selective pressures or exhibit short-term variation from external or innate factors, which may differ in a species-specific manner. 
    more » « less