Here we report a photonic crystal with a split ring unit cell shape that demonstrates an order of magnitude larger peak electric field energy density compared with that of a traditional photonic crystal. Split ring photonic crystals possess several subwavelength tuning parameters, including split ring rotation angle and split width, which can be leveraged to modify light confinement for specific applications. Modifying the split ring’s parameters allows for tuning of the peak electric field energy density in the split by over one order of magnitude and tuning of the air band edge wavelength by nearly 10 nm in the near infrared region. Designed to have highly focused optical energy in an accessible subwavelength gap, the split ring photonic crystal is well suited for applications including optical biosensing, optical trapping, and enhanced emission from a quantum dot or other nanoscale emitter that could be incorporated in the split.
- Award ID(s):
- 1809937
- PAR ID:
- 10389699
- Date Published:
- Journal Name:
- Conference on Lasers and Electro-Optics
- Page Range / eLocation ID:
- JW3A.48
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Microsphere photolithography (MPL) is a fabrication technique that combines the ability to self-assemble arrays of microspheres with the ability of a microsphere to focus light to a photonic jet, in order to create highly ordered nanoscale features in photoresist. This paper presents a model of photoresist exposure with the photonic jet, combining a full-wave electromagnetic model of the microsphere/photoresist interaction with the sequential removal of exposed photoresist by the developer. The model is used to predict the dose curves for the MPL process based on the photoresist thickness, illumination conditions, and development time. After experimental validation, the model provides insight into the process including the resolution, sensitivity, and effects of off-normal illumination. This guides the fabrication of sub-100 nm hole/disk arrays using lift-off, and superposition is shown to predict the geometry for split-ring resonators created using multiple exposures. This model will assist synthesizing fabrication parameters to create large area scalable metasurfaces with sensing and energy management applications.
-
Abstract We demonstrate an electrically-driven metal-dielectric photonic crystal emitter by fabricating a series of organic light emitting diode microcavities in a vertical stack. The states of the individual microcavities are shown to split into bands of hybridized photonic energy states through interaction with adjacent cavities. The propagating photonic modes within the crystal depend sensitively on the unit cell geometry and the optical properties of the component materials. By systematically varying the metallic layer thicknesses, we show control over the density of states and band center. The emergence of a tunable photonic band gap due to an asymmetry-introduced Peierls distortion is demonstrated and correlated to the unit cell configuration. This work develops a class of one dimensional, planar, photonic crystal emitter architectures enabling either narrow linewidth, multi-mode, or broadband emission with a high degree of tunability.
-
We report terahertz time-domain spectroscopy experiments demonstrating strong light–matter coupling in a terahertz LC metamaterial (MM) in which the phonon resonance of a topological insulator thin film is coupled to the photonic modes of an array of electronic split ring resonators. As we tune the MM resonance frequency through the frequency of the low-frequency α mode of (BixSb1–x)2Te3 (BST), we observe strong mixing and level repulsion between the phonon and MM resonance. This hybrid resonance is a phonon polariton. We observe a normalized coupling strength, η = ΩR/ωc ≈ 0.09, using the measured vacuum Rabi frequency and cavity resonance. Our results demonstrate that one can tune the mechanical properties of these materials by changing their electromagnetic environment and therefore modify their magnetic and topological degrees of freedom via coupling to the lattice in this fashion.more » « less