skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Doubly-Affine Extractors, and Their Applications
In this work we challenge the common misconception that information-theoretic (IT) privacy is too impractical to be used in the real-world: we propose to build simple and reusable IT-encryption solutions whose only efficiency penalty (compared to computationally-secure schemes) comes from a large secret key size, which is often a rather minor inconvenience, as storage is cheap. In particular, our solutions are stateless and locally computable at the optimal rate, meaning that honest parties do not maintain state and read only (optimally) small portions of their large keys with every use. Moreover, we also propose a novel architecture for outsourcing the storage of these long keys to a network of semi-trusted servers, trading the need to store large secrets with the assumption that it is hard to simultaneously compromise too many publicly accessible ad-hoc servers. Our architecture supports everlasting privacy and post-application security of the derived one-time keys, resolving two major limitations of a related model for outsourcing key storage, called bounded storage model. Both of these results come from nearly optimal constructions of so called doubly-affine extractors: locally-computable, seeded extractors Ext(X,S) which are linear functions of X (for any fixed seed S), and protect against bounded affine leakage on X. This holds unconditionally, even if (a) affine leakage may adaptively depend on the extracted key R = Ext(X,S); and (b) the seed S is only computationally secure. Neither of these properties are possible with general-leakage extractors.  more » « less
Award ID(s):
1815546
PAR ID:
10389708
Author(s) / Creator(s):
Date Published:
Journal Name:
2nd Conference on Information-Theoretic Cryptography (ITC 2021)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pöpper, Christina; Batina, Lejla (Ed.)
    Fuzzy extractors derive stable keys from noisy sources non-interactively (Dodis et al., SIAM Journal of Computing 2008). Since their introduction, research has focused on two tasks: 1) showing security for as many distributions as possible and 2) providing stronger security guarantees including allowing one to enroll the same value multiple times (reusability), security against an active attacker (robustness), and preventing leakage about the enrolled value (privacy). Given the need for progress on the basic fuzzy extractor primitive, it is prudent to seek generic mechanisms to transform a fuzzy extractor into one that is robust, private, and reusable so that it can inherit further improvements. This work asks if one can generically upgrade fuzzy extractors to achieve robustness, privacy, and reusability. We show positive and negative results: we show upgrades for robustness and privacy, but we provide a negative result on reuse. 1. We upgrade (private) fuzzy extractors to be robust under weaker assumptions than previously known in the common reference string model. 2. We show a generic upgrade for a private fuzzy extractor using multi-bit compute and compare (MBCC) obfuscation (Wichs and Zirdelis, FOCS 2017) that requires less entropy than prior work. 3. We show one cannot arbitrarily compose private fuzzy extractors. In particular, we show that assuming MBCC obfuscation and collision-resistant hash functions, there does not exist a private fuzzy extractor secure against unpredictable auxiliary inputs, strengthening a negative result of Brzuska et al. (Crypto 2014). 
    more » « less
  2. Secure aggregation, which is a core component of federated learning, aggregates locally trained models from distributed users at a central server, without revealing any other information about the local users' data. This paper follows a recent information theoretic secure aggregation problem with user dropouts, where the objective is to characterize the minimum communication cost from the K users to the server during the model aggregation. All existing secure aggregation protocols let the users share and store coded keys to guarantee security. On the motivation that uncoded groupwise keys are more convenient to be shared and could be used in large range of practical applications, this paper is the first to consider uncoded groupwise keys, where the keys are mutually independent and each key is shared by a group of S users. We show that if S is beyond a threshold, a new secure aggregation protocol with uncoded groupwise keys, referred to as GroupSecAgg, can achieve the same optimal communication cost as the best protocol with coded keys. The experiments on Amazon EC2 show the considerable improvements on the key sharing and model aggregation times compared to the state-of-the art. 
    more » « less
  3. Secure aggregation, which is a core component of federated learning, aggregates locally trained models from distributed users at a central server. The “secure” nature of such aggregation consists of the fact that no information about the local users’ data must be leaked to the server except the aggregated local models. In order to guarantee security, some keys may be shared among the users (this is referred to as the key sharing phase). After the key sharing phase, each user masks its trained model which is then sent to the server (this is referred to as the model aggregation phase). This paper follows the information theoretic secure aggregation problem originally formulated by Zhao and Sun, with the objective to characterize the minimum communication cost from the K users in the model aggregation phase. Due to user dropouts, which are common in real systems, the server may not receive all messages from the users. A secure aggregation scheme should tolerate the dropouts of at most K – U users, where U is a system parameter. The optimal communication cost is characterized by Zhao and Sun, but with the assumption that the keys stored by the users could be any random variables with arbitrary dependency. On the motivation that uncoded groupwise keys are more convenient to be shared and could be used in large range of applications besides federated learning, in this paper we add one constraint into the above problem, namely, that the key variables are mutually independent and each key is shared by a group of S users, where S is another system parameter. To the best of our knowledge, all existing secure aggregation schemes (with information theoretic security or computational security) assign coded keys to the users. We show that if S > K–U, a new secure aggregation scheme with uncoded groupwise keys can achieve the same optimal communication cost as the best scheme with coded keys; if S ≤ K – U, uncoded groupwise key sharing is strictly sub-optimal. Finally, we also implement our proposed secure aggregation scheme into Amazon EC2, which are then compared with the existing secure aggregation schemes with offline key sharing. 
    more » « less
  4. A long line of work in the past two decades or so established close connections between several different pseudorandom objects and applications, including seeded or seedless non-malleable extractors, two source extractors, (bipartite) Ramsey graphs, privacy amplification protocols with an active adversary, non-malleable codes and many more. These connections essentially show that an asymptotically optimal construction of one central object will lead to asymptotically optimal solutions to all the others. However, despite considerable effort, previous works can get close but still lack one final step to achieve truly asymptotically optimal constructions. In this paper we provide the last missing link, thus simultaneously achieving explicit, asymptotically optimal constructions and solutions for various well studied extractors and applications, that have been the subjects of long lines of research. Our results include: 1. Asymptotically optimal seeded non-malleable extractors, which in turn give two source extractors for asymptotically optimal min-entropy of $$O(\log n)$$, explicit constructions of $$K$$-Ramsey graphs on $$N$$ vertices with $$K=\log^{O(1)} N$$, and truly optimal privacy amplification protocols with an active adversary. 2. Two source non-malleable extractors and affine non-malleable extractors for some linear min-entropy with exponentially small error, which in turn give the first explicit construction of non-malleable codes against $$2$$-split state tampering and affine tampering with constant rate and \emph{exponentially} small error. 3. Explicit extractors for affine sources, sumset sources, interleaved sources, and small space sources that achieve asymptotically optimal min-entropy of $$O(\log n)$ or $$2s+O(\log n)$$ (for space $$s$$ sources). 4. An explicit function that requires strongly linear read once branching programs of size $$2^{n-O(\log n)}$$, which is optimal up to the constant in $$O(\cdot)$$. Previously, even for standard read once branching programs, the best known size lower bound for an explicit function is $$2^{n-O(\log^2 n)}$$. 
    more » « less
  5. Error-correcting codes that admit {\em local} decoding and correcting algorithms have been the focus of much recent research due to their numerous theoretical and practical applications. An important goal is to obtain the best possible tradeoffs between the number of queries the algorithm makes to its oracle (the {\em locality} of the task), and the amount of redundancy in the encoding (the {\em information rate}). In Hamming's classical adversarial channel model, the current tradeoffs are dramatic, allowing either small locality, but superpolynomial blocklength, or small blocklength, but high locality. However, in the computationally bounded, adversarial channel model, proposed by Lipton (STACS 1994), constructions of locally decodable codes suddenly exhibit small locality and small blocklength, but these constructions require strong trusted setup assumptions e.g., Ostrovsky, Pandey and Sahai (ICALP 2007) construct private locally decodable codes in the setting where the sender and receiver already share a symmetric key. We study variants of locally decodable and locally correctable codes in computationally bounded, adversarial channels, in a setting with no public-key or private-key cryptographic setup. The only setup assumption we require is the selection of the {\em public} parameters (seed) for a collision-resistant hash function. Specifically, we provide constructions of {\em relaxed locally correctable} and {\em relaxed locally decodable codes} over the binary alphabet, with constant information rate, and poly-logarithmic locality. Our constructions, which compare favorably with their classical analogues in the computationally unbounded Hamming channel, crucially employ {\em collision-resistant hash functions} and {\em local expander graphs}, extending ideas from recent cryptographic constructions of memory-hard functions. 
    more » « less