skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Preclinical Cold Atmospheric Plasma Cancer Treatment
CAP is an ionized gas generated under atmospheric pressure conditions. Due to its reactive chemical components and near-room temperature nature, CAP has promising applications in diverse branches of medicine, including microorganism sterilization, biofilm inactivation, wound healing, and cancer therapy. Currently, hundreds of in vitro demonstrations of CAP-based cancer treatments have been reported. However, preclinical studies, particularly in vivo studies, are pivotal to achieving a final clinical application. Here, we comprehensively introduced the research status of the preclinical usage of CAP in cancer treatment, by primarily focusing on the in vivo studies over the past decade. We summarized the primary research strategies in preclinical and clinical studies, including transdermal CAP treatment, post-surgical CAP treatment, CAP-activated solutions treatment, and sensitization treatment to drugs. Finally, the underlying mechanism was discussed based on the latest understanding.  more » « less
Award ID(s):
1747760
PAR ID:
10389747
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Cancers
Volume:
14
Issue:
14
ISSN:
2072-6694
Page Range / eLocation ID:
3461
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Significant advances have been made in the development of nanoparticles for cancer treatment in recent years. Despite promising results in preclinical animal models, cancer nanomedicines often fail in clinical trials. This failure rate could be reduced by defining stringent criteria for testing and quality control during the design and development stages, and by performing carefully planned preclinical studies in relevant animal models. This article discusses best practices for the evaluation of nanomedicines in murine tumor models. First, a recommended set of experiments to perform is introduced, including discussion of the types of data to collect during these studies. This is followed by an outline of various tumor models and their clinical relevance. Next, different routes of nanoparticle administration are overviewed, followed by a summary of important controls to include in in vivo studies of nanomedicine. Finally, animal welfare considerations are discussed, and an overview of the steps involved in achieving US Food and Drug Administration approval after animal studies are completed is provided. Researchers should use this report as a guideline for effective preclinical evaluation of cancer nanomedicine. As the community adopts best practices for in vivo testing, the rate of clinical translation of cancer nanomedicines is likely to improve. 
    more » « less
  2. 153 Background: Conventional monolayer cell cultures and xenograft models, while useful and economical in early drug discovery, cannot predict clinical efficacy. Further, preclinical screening assays that rely on differential metabolic activity between separate control and treated wells are incapable of capturing phenotypic response and could overstate efficacy for cells with high rates of proliferation. Consequently, over 95% of anticancer agents that show efficacy in preclinical studies, fail in clinical trials. Recently, patient-derived organoid (PDO) models have been utilized in developing platforms to predict clinical efficacy of preclinical formulations. If successful, such predictive ex vivo technologies could revolutionize cancer treatment by reducing cost and time-to-market for new, more effective therapeutics. Objective: Characterize a novel bioprinted organoid tumor (BOT) high-throughput screening ex vivo platform for drug response prediction (DRP) with known proteosome and survivn inhibitors in colorectal cancer. Methods: Bioink for 3D printing BOTs was prepared with HT-29 cells, an established NCI-60 human colorectal adenocarcinoma cell line with known sensitivity to proteosome and survivin inhibitors. Bioink was deposited layer-by-layer on multiple substrates, in various geometrical configurations, and cured in stages to allow cells and matrix to self-assemble with limited degrees of freedom. BOTs were screened 24h and 48h after printing with proteosome inhibitor Bortezomib and survivin inhibitor YM-155. BOTs were evaluated 48h and 72h after treatment using immunofluorescence live/dead assay. Morphological phenotypic changes resulting from treatment were also recorded. Results: Proteasome and survivin inhibitors have been reported to inhibit proliferation and induce cell death in colorectal cancer cells. A dose dependent response was observed for both agents in our novel BOT HTS thereby validating the platform. In addition, characteristic self-assembly of HT-29 cells was observed to be disrupted at effective doses and at certain concentrations below the effective dose. Traditional ATP assays are incapable of recording such phenotypic modulation. Further, a higher proliferation profile was observed in untreated BOTs suggesting that use of independent control wells in traditional assays could overstate efficacy of treatment. Conclusions: Functional high-throughput ex vivo DRP technologies have the potential to transform cancer treatment – from bench to bedside – along the drug discovery to market roadmap for much needed novel anticancer agents. 
    more » « less
  3. null (Ed.)
    Cold atmospheric plasma (CAP) is an ionized gas, the product of a non-equilibrium discharge at atmospheric conditions. Both chemical and physical factors in CAP have been demonstrated to have unique biological impacts in cancer treatment. From a chemical-based perspective, the anti-cancer efficacy is determined by the cellular sensitivity to reactive species. CAP may also be used as a powerful anti-cancer modality based on its physical factors, mainly EM emission. Here, we delve into three CAP cancer treatment approaches, chemically based direct/indirect treatment and physical-based treatment by discussing their basic principles, features, advantages, and drawbacks. This review does not focus on the molecular mechanisms, which have been widely introduced in previous reviews. Based on these approaches and novel adaptive plasma concepts, we discuss the potential clinical application of CAP cancer treatment using a critical evaluation and forward-looking perspectives. 
    more » « less
  4. null (Ed.)
    Cold atmospheric plasma (CAP), an ionized gas with near room temperature, shows a wide application in medicine. CAP is a tunable source of complex chemical components including many reactive species, which allows CAP to exert many biological effects on bacterial, fungal, yeast, and mammalian cells particularly cancer cells. In this review, we discuss the novel state of the art CAP-based cancer treatment. We focus on the comparison between the direct CAP treatment and the indirect CAP treatment which implements the use of CAP-activated solutions. The difference between the two treatment strategies reveals two unique features of the biological response to CAP: the cell-based H 2 O 2 generation and the activation phenomenon. Short-lived reactive species and physical factors from plasma may trigger these two cellular responses. 
    more » « less
  5. Abstract Cold atmospheric plasma (CAP), a near room temperature ionized gas, has shown potential application in many branches of medicine, particularly in cancer treatment. In previous studies, the biological effect of CAP on cancer cells and other mammalian cells has been based solely on the chemical factors in CAP, particularly the reactive species. Therefore, plasma medicine has been regarded as a reactive species-based medicine, and the physical factors in CAP such as the thermal effect, ultraviolet irradiation, and electromagnetic effect have been regarded as ignorable factors. In this study, we investigated the effect of a physical CAP treatment on glioblastoma cells. For the first time, we demonstrated that the physical factors in CAP could reinstate the positive selectivity on CAP-treated astrocytes. The positive selectivity was a result of necrosis, a new cell death in glioblastoma cells characterized by the leak of bulk water from the cell membrane. The physically-based CAP treatment overcomed a large limitation of the traditional chemically based CAP treatment, which had complete dependence on the sensitivity of cells to reactive species. The physically-based CAP treatment is a potential non-invasive anti-tumor tool, which may have wide application for tumors located in deeper tissues. 
    more » « less