skip to main content


Title: Water Quenched and Acceptor‐Doped Textured Piezoelectric Ceramics for Off‐Resonance and On‐Resonance Devices
Abstract

Piezoelectric materials should simultaneously possess the soft properties (high piezoelectric coefficient,d33; high voltage coefficient,g33; high electromechanical coupling factor,k) and hard properties (high mechanical quality factor,Qm; low dielectric loss, tan δ) along with wide operation temperature (e.g., high rhombohedral–tetragonal phase transition temperatureTr–t) for covering off‐resonance (figure of merit (FOM),d33 ×g33) and on‐resonance (FOM,Qm ×k2) applications. However, achieving hard and soft piezoelectric properties simultaneously along with high transition temperature is quite challenging since these properties are inversely related to each other. Here, through a synergistic design strategy of combining composition/phase selection, crystallographic texturing, defect engineering, and water quenching technique, <001> textured 2 mol% MnO2doped 0.19PIN‐0.445PSN‐0.365PT ceramics exhibiting giant FOM values ofQm × (227–261) along with highd33 ×g33(28–35 × 10−12m2N−1), low tan δ (0.3–0.39%) and highTr–tof 140–190 °C, which is far beyond the performance of the state‐of‐the‐art piezoelectric materials, are fabricated. Further, a novel water quenching (WQ) room temperature poling technique, which results in enhanced piezoelectricity of textured MnO2doped PIN‐PSN‐PT ceramics, is reported. Based upon the experiments and phase‐field modeling, the enhanced piezoelectricity is explained in terms of the quenching‐induced rhombohedral phase formation. These findings will have tremendous impact on development of high performance off‐resonance and on‐resonance piezoelectric devices with high stability.

 
more » « less
NSF-PAR ID:
10389765
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
19
Issue:
1
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Next‐generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)‐free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials’ design with multi‐phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead‐free piezoelectric materials (1‐x)Ba0.95Ca0.05Ti0.95Zr0.05O3‐(x)Ba0.95Ca0.05Ti0.95Sn0.05O3, are reported, which are represented as (1‐x)BCZT‐(x)BCST, with demonstrated excellent properties and energy harvesting performance. The (1‐x)BCZT‐(x)BCST materials are synthesized by high‐temperature solid‐state ceramic reaction method by varyingxin the full range (x= 0.00–1.00). In‐depth exploration research is performed on the structural, dielectric, ferroelectric, and electro‐mechanical properties of (1‐x)BCZT‐(x)BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X‐ray diffraction (XRD) analyses, which also reveals that the Ca2+, Zr4+, and Sn4+are well dispersed within the BaTiO3lattice. For all (1‐x)BCZT‐(x)BCST ceramics, thorough investigation of phase formation and phase‐stability using XRD, Rietveld refinement, Raman spectroscopy, high‐resolution transmission electron microscopy (HRTEM), and temperature‐dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2+P4mm) phases at room temperature. The steady transition ofAmm2crystal symmetry toP4mmcrystal symmetry with increasingxcontent is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral‐orthorhombic (TR‐O), orthorhombic‐ tetragonal (TO‐T), and tetragonal‐cubic (TC), gradually shift toward lower temperature with increasingxcontent. For (1‐x)BCZT‐(x)BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constantεr≈ 1900–3300 (near room temperature),εr≈ 8800–12 900 (near Curie temperature), dielectric loss, tanδ≈ 0.01–0.02, remanent polarizationPr≈ 9.4–14 µC cm−2, coercive electric fieldEc≈ 2.5–3.6 kV cm−1. Further, high electric field‐induced strainS≈ 0.12–0.175%, piezoelectric charge coefficientd33≈ 296–360 pC N−1, converse piezoelectric coefficient ≈ 240–340 pm V−1, planar electromechanical coupling coefficientkp≈ 0.34–0.45, and electrostrictive coefficient (Q33)avg≈ 0.026–0.038 m4C−2are attained. Output performance with respect to mechanical energy demonstrates that the (0.6)BCZT‐(0.4)BCST composition (x= 0.4) displays better efficiency for generating electrical energy and, thus, the synthesized lead‐free piezoelectric (1‐x)BCZT‐(x)BCST samples are suitable for energy harvesting applications. The results and analyses point to the outcome that the (1‐x)BCZT‐(x)BCST ceramics as a potentially strong contender within the family of Pb‐free piezoelectric materials for future electronics and energy harvesting device technologies.

     
    more » « less
  2. Abstract

    Piezoelectric materials enable the conversion of mechanical energy into electrical energy and vice‐versa. Ultrahigh piezoelectricity has been only observed in single crystals. Realization of piezoelectric ceramics with longitudinal piezoelectric constant (d33) close to 2000 pC N–1, which combines single crystal‐like high properties and ceramic‐like cost effectiveness, large‐scale manufacturing, and machinability will be a milestone in advancement of piezoelectric ceramic materials. Here, guided by phenomenological models and phase‐field simulations that provide conditions for flattening the energy landscape of polarization, a synergistic design strategy is demonstrated that exploits compositionally driven local structural heterogeneity and microstructural grain orientation/texturing to provide record piezoelectricity in ceramics. This strategy is demonstrated on [001]PC‐textured and Eu3+‐doped Pb(Mg1/3Nb2/3)O3‐PbTiO3(PMN‐PT) ceramics that exhibit the highest piezoelectric coefficient (small‐signald33of up to 1950 pC N–1and large‐signald33* of ≈2100 pm V–1) among all the reported piezoelectric ceramics. Extensive characterization conducted using high‐resolution microscopy and diffraction techniques in conjunction with the computational models reveals the underlying mechanisms governing the piezoelectric performance. Further, the impact of losses on the electromechanical coupling is identified, which plays major role in suppressing the percentage of piezoelectricity enhancement, and the fundamental understanding of loss in this study sheds light on further enhancement of piezoelectricity. These results on cost‐effective and record performance piezoelectric ceramics will launch a new generation of piezoelectric applications.

     
    more » « less
  3. Abstract

    Electromechanical coupling factor,k, of piezoelectric materials determines the conversion efficiency of mechanical to electrical energy or electrical to mechanical energy. Here, we provide an fundamental approach to design piezoelectric materials that provide near-ideal magnitude ofk, via exploiting the electrocrystalline anisotropy through fabrication of grain-oriented or textured ceramics. Coupled phase field simulation and experimental investigation on <001> textured Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3ceramics illustrate thatkcan reach same magnitude as that for a single crystal, far beyond the average value of traditional ceramics. To provide atomistic-scale understanding of our approach, we employ a theoretical model to determine the physical origin ofkin perovskite ferroelectrics and find that strong covalent bonding between B-site cation and oxygen viad-phybridization contributes most towards the magnitude ofk. This demonstration of near-idealkvalue in textured ceramics will have tremendous impact on design of ultra-wide bandwidth, high efficiency, high power density, and high stability piezoelectric devices.

     
    more » « less
  4. Abstract

    Poly(vinylidene fluoride) (PVDF)‐based polymers demonstrate great potential for applications in flexible and wearable electronics but show low piezoelectric coefficients (e.g., −d33< 30 pC N−1). The effective improvement for the piezoelectricity of PVDF is achieved by manipulating its semicrystalline structures. However, there is still a debate about which component is the primary contributor to piezoelectricity. Therefore, current methods to improve the piezoelectricity of PVDF can be classified into modulations of the amorphous phase, the crystalline region, and the crystalline–amorphous interface. Here, the basic principles and measurements of piezoelectric coefficients for soft polymers are first discussed. Then, three different categories of structural modulations are reviewed. In each category, the physical understanding and strategies to improve the piezoelectric performance of PVDF are discussed. In particular, the crucial role of the oriented amorphous fraction at the crystalline–amorphous interface in determining the piezoelectricity of PVDF is emphasized. At last, the future development of high performance piezoelectric polymers is outlooked.

     
    more » « less
  5. Abstract

    A new class of high‐temperature dipolar polymers based on sulfonylated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SO2‐PPO) was synthesized by post‐polymer functionalization. Owing to the efficient rotation of highly polar methylsulfonyl side groups below the glass transition temperature (Tg≈220 °C), the dipolar polarization of these SO2‐PPOs was enhanced, and thus the dielectric constant was high. Consequently, the discharge energy density reached up to 22 J cm−3. Owing to its highTg , the SO2‐PPO25sample also exhibited a low dielectric loss. For example, the dissipation factor (tan δ) was 0.003, and the discharge efficiency at 800 MV m−1was 92 %. Therefore, these dipolar glass polymers are promising for high‐temperature, high‐energy‐density, and low‐loss electrical energy storage applications.

     
    more » « less