skip to main content


Title: Distances Between Immersed Graphs: Metric Properties
Abstract

Graphs in metric spaces appear in a wide range of data sets, and there is a large body of work focused on comparing, matching, or analyzing collections of graphs in different ambient spaces. In this survey, we provide an overview of a diverse collection of distance measures that can be defined on the set of finite graphs immersed (and in some cases, embedded) in a metric space. For each of the distance measures, we recall their definitions and investigate which of the properties of a metric they satisfy. Furthermore we compare the distance measures based on these properties and discuss their computational complexity.

 
more » « less
Award ID(s):
2107434 1907591 2106578 2106672 2046730 1854336 1907612
NSF-PAR ID:
10389784
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
La Matematica
Volume:
2
Issue:
1
ISSN:
2730-9657
Format(s):
Medium: X Size: p. 197-222
Size(s):
["p. 197-222"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Applications in data science, shape analysis, and object classification frequently require comparison of probability distributions defined on different ambient spaces. To accomplish this, one requires a notion of distance on a given class of metric measure spaces—that is, compact metric spaces endowed with probability measures. Such distances are typically defined as comparisons between metric measure space invariants, such as distance distributions (also referred to as shape distributions, distance histograms, or shape contexts in the literature). Generally, distances defined in terms of distance distributions are actually pseudometrics, in that they may vanish when comparing nonisomorphic spaces. The goal of this paper is to set up a formal framework for assessing the discrimininative power of distance distributions, that is, the extent to which these pseudometrics fail to define proper metrics. We formulate several precise inverse problems in terms of these invariants and answer them in several categories of metric measure spaces, including the category of plane curves, where we give a counterexample to the curve histogram conjecture of Brinkman and Olver, the categories of embedded and Riemannian manifolds, where we obtain sphere rigidity results, and the category of metric graphs, where we obtain a local injectivity result along the lines of classical work of Boutin and Kemper on point cloud configurations. The inverse problems are further contextualized by the introduction of a variant of the Gromov–Wasserstein distance on the space of metric measure spaces, which is inspired by the original Monge formulation of optimal transport.

     
    more » « less
  2. Abstract

    To characterize the location (mean, median) of a set of graphs, one needs a notion of centrality that has been adapted to metric spaces. A standard approach is to consider the Fréchet mean. In practice, computing the Fréchet mean for sets of large graphs presents many computational issues. In this work, we suggest a method that may be used to compute the Fréchet mean for sets of graphs which is metric independent. We show that the technique proposed can be used to determine the Fréchet mean when considering the Hamming distance or a distance defined by the difference between the spectra of the adjacency matrices of the graphs.

     
    more » « less
  3. Abstract

    There are many ways of measuring and modeling tail-dependence in random vectors: from the general framework of multivariate regular variation and the flexible class of max-stable vectors down to simple and concise summary measures like the matrix of bivariate tail-dependence coefficients. This paper starts by providing a review of existing results from a unifying perspective, which highlights connections between extreme value theory and the theory of cuts and metrics. Our approach leads to some new findings in both areas with some applications to current topics in risk management.

    We begin by using the framework of multivariate regular variation to show that extremal coefficients, or equivalently, the higher-order tail-dependence coefficients of a random vector can simply be understood in terms of random exceedance sets, which allows us to extend the notion of Bernoulli compatibility. In the special but important case of bivariate tail-dependence, we establish a correspondence between tail-dependence matrices and$$L^1$$L1- and$$\ell _1$$1-embeddable finite metric spaces via the spectral distance, which is a metric on the space of jointly 1-Fréchet random variables. Namely, the coefficients of the cut-decomposition of the spectral distance and of the Tawn-Molchanov max-stable model realizing the corresponding bivariate extremal dependence coincide. We show that line metrics are rigid and if the spectral distance corresponds to a line metric, the higher order tail-dependence is determined by the bivariate tail-dependence matrix.

    Finally, the correspondence between$$\ell _1$$1-embeddable metric spaces and tail-dependence matrices allows us to revisit the realizability problem, i.e. checking whether a given matrix is a valid tail-dependence matrix. We confirm a conjecture of Shyamalkumar and Tao (2020) that this problem is NP-complete.

     
    more » « less
  4. The Fréchet distance is often used to measure distances between paths, with applications in areas ranging from map matching to GPS trajectory analysis to hand- writing recognition. More recently, the Fréchet distance has been generalized to a distance between two copies of the same graph embedded or immersed in a metric space; this more general setting opens up a wide range of more complex applications in graph analysis. In this paper, we initiate a study of some of the fundamental topological properties of spaces of paths and of graphs mapped to R^n under the Fréchet distance, in an eort to lay the theoretical groundwork for understanding how these distances can be used in practice. In particular, we prove whether or not these spaces, and the metric balls therein, are path-connected. 
    more » « less
  5. Oliva, Gabriele (Ed.)
    We define a new family of similarity and distance measures on graphs, and explore their theoretical properties in comparison to conventional distance metrics. These measures are defined by the solution(s) to an optimization problem which attempts find a map minimizing the discrepancy between two graph Laplacian exponential matrices, under norm-preserving and sparsity constraints. Variants of the distance metric are introduced to consider such optimized maps under sparsity constraints as well as fixed time-scaling between the two Laplacians. The objective function of this optimization is multimodal and has discontinuous slope, and is hence difficult for univariate optimizers to solve. We demonstrate a novel procedure for efficiently calculating these optima for two of our distance measure variants. We present numerical experiments demonstrating that (a) upper bounds of our distance metrics can be used to distinguish between lineages of related graphs; (b) our procedure is faster at finding the required optima, by as much as a factor of 10 3 ; and (c) the upper bounds satisfy the triangle inequality exactly under some assumptions and approximately under others. We also derive an upper bound for the distance between two graph products, in terms of the distance between the two pairs of factors. Additionally, we present several possible applications, including the construction of infinite “graph limits” by means of Cauchy sequences of graphs related to one another by our distance measure. 
    more » « less