skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrogen Line Shape Uncertainties in White Dwarf Model Atmospheres
For isolated white dwarf (WD) stars, fits to their observed spectra provide the most precise estimates of their effective temperatures and surface gravities. Even so, recent studies have shown that systematic offsets exist between such spectroscopic parameter determinations and those based on broadband photometry. These large discrepancies (10% in T eff , 0.1  M ⊙ in mass) provide scientific motivation for reconsidering the atomic physics employed in the model atmospheres of these stars. Recent simulation work of ours suggests that the most important remaining uncertainties in simulation-based calculations of line shapes are the treatment of 1) the electric field distribution and 2) the occupation probability (OP) prescription. We review the work that has been done in these areas and outline possible avenues for progress.  more » « less
Award ID(s):
1707419
PAR ID:
10389810
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
9
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The r-process-enhanced (RPE) stars provide fossil records of the assembly history of the Milky Way (MW) and the nucleosynthesis of the heaviest elements. Observations by the R-Process Alliance (RPA) and others have confirmed that many RPE stars are associated with chemo-dynamically tagged groups, which likely came from accreted dwarf galaxies of the MW. However, we do not know how RPE stars are formed. Here, we present the result of a cosmological zoom-in simulation of an MW-like galaxy with r-process enrichment, performed with the highest resolution in both time and mass. Thanks to this advancement, unlike previous simulations, we find that most highly RPE (r-II; [Eu/Fe] > +0.7) stars are formed in low-mass dwarf galaxies that have been enriched in r-process elements for [Fe/H] $$\lt -2.5$$, while those with higher metallicity are formed in situ, in locally enhanced gas clumps that were not necessarily members of dwarf galaxies. This result suggests that low-mass accreted dwarf galaxies are the main formation site of r-II stars with [Fe/H] $$\, \lt -2.5$$. We also find that most low-metallicity r-II stars exhibit halo-like kinematics. Some r-II stars formed in the same halo show low dispersions in [Fe/H] and somewhat larger dispersions of [Eu/Fe], similar to the observations. The fraction of simulated r-II stars is commensurate with observations from the RPA, and the distribution of the predicted [Eu/Fe] for halo r-II stars matches that observed. These results demonstrate that RPE stars can be valuable probes of the accretion of dwarf galaxies in the early stages of their formation. 
    more » « less
  2. Recent work withJWSThas demonstrated its capability to identify and chemically characterize multiple populations in globular clusters down to the H-burning limit. In this study, we explore the kinematics of multiple populations in the globular cluster 47 Tucanae by combining data fromJWST, HST, Gaia, and ground-based telescopes. We analyzed velocity dispersion and anisotropy profiles from the cluster center out to ∼10Rh. Our findings indicate that while first population (1G) stars’ motions are isotropic, second population (2G) stars’ motions are significantly radially anisotropic. These results align with the predictions of simulations of the dynamical evolution of clusters where 2G stars are initially more centrally concentrated than 1G stars. Furthermore, we subdivided the 2G population into two subpopulations: 2GAand 2GB, with the latter being more chemically extreme. We compared their dynamical profiles and found no significant differences. For the first time, we measured the degree of energy equipartition among the multiple populations of 47 Tucanae. Overall, within the analyzed radial range (∼2–4Rh), both populations exhibit a low degree of energy equipartition. The most significant differences between 1G and 2G stars are observed in the tangential velocity component, where 2G stars are characterized by a stronger degree of energy equipartition than 1G stars. In the radial component, the behavior of 1G and 2G stars is more variable, with differences largely dependent on radius. Moreover, our analysis reveals that the ratio of rotational velocity to velocity dispersion is larger for the 2G population. Finally, we found that 1G stars exhibit a higher skewness in their tangential proper motions than 2G stars, providing additional evidence of kinematic differences between the two stellar generations. 
    more » « less
  3. null (Ed.)
    ABSTRACT The formation of Population III (Pop III) stars is a critical step in the evolution of the early Universe. To understand how these stars affected their metal-enriched descendants, the details of how, why and where Pop III formation takes place needs to be determined. One of the processes that is assumed to greatly affect the formation of Pop III stars is the presence of a Lyman–Werner (LW) radiation background, that destroys H2, a necessary coolant in the creation of Pop III stars. Self-shielding can alleviate the effect the LW background has on the H2 within haloes. In this work, we perform a cosmological simulation to study the birthplaces of Pop III stars, using the adaptive mesh refinement code enzo. We investigate the distribution of host halo masses and its relationship to the LW background intensity. Compared to previous work, haloes form Pop III stars at much lower masses, up to a factor of a few, due to the inclusion of H2 self-shielding. We see no relationship between the LW intensity and host halo mass. Most haloes form multiple Pop III stars, with a median number of four, up to a maximum of 16, at the instance of Pop III formation. Our results suggest that Pop III star formation may be less affected by LW radiation feedback than previously thought and that Pop III multiple systems are common. 
    more » « less
  4. ABSTRACT Recent observational studies have uncovered a small number of very metal-poor (VMP) stars with cold kinematics in the Galactic disc and bulge. However, their origins remain enigmatic. We select a total of 138 Milky Way (MW) analogues from the TNG50 cosmological simulation based on their z = 0 properties: discy morphology, stellar mass, and local environment. In order to make more predictive statements for the MW, we further limit the spatial volume coverage of stellar populations in galaxies to that targeted by the upcoming 4MOST high-resolution survey of the Galactic disc and bulge. We find that across all galaxies, ∼20 per cent of VMP ([Fe/H] < −2) stars belong to the disc, with some analogues reaching 30 per cent. About 50 ± 10 per cent of the VMP disc stars are, on average, older than 12.5 Gyr and ∼70 ± 10 per cent come from accreted satellites. A large fraction of the VMP stars belong to the halo (∼70) and have a median age of 12 Gyr. Our results with the TNG50 cosmological simulation confirm earlier findings with simulations of fewer individual galaxies, and suggest that the stellar disc of the MW is very likely to host significant amounts of very- and extremely-metal-poor stars that, although mostly of ex situ origin, can also form in situ, reinforcing the idea of the existence of a primordial Galactic disc. 
    more » « less
  5. Abstract We study the formation of stars with varying amounts of heavy elements synthesized by the rapid neutron-capture process (r-process) based on our detailed cosmological zoom-in simulation of a Milky Way–like galaxy with anN-body/smoothed particle hydrodynamics code,asura. Most stars with no overabundance inr-process elements, as well as the stronglyr-process-enhanced (RPE)r-II stars ([Eu/Fe] > +0.7), are formed in dwarf galaxies accreted by the Milky Way within the 6 Gyr after the Big Bang. In contrast, over half of the moderately enhancedr-I stars (+0.3 < [Eu/Fe] ≤ +0.7) are formed in the main in situ disk after 6 Gyr. Our results suggest that the fraction ofr-I andr-II stars formed in disrupted dwarf galaxies is larger the higher their [Eu/Fe] is. Accordingly, the most strongly enhancedr-III stars ([Eu/Fe] > +2.0) are formed in accreted components. These results suggest that non-r-process-enhanced stars andr-II stars are mainly formed in low-mass dwarf galaxies that hosted either none or a single neutron star merger, while ther-I stars tend to form in the well-mixed in situ disk. We compare our findings with high-resolution spectroscopic observations of RPE metal-poor stars in the halo and dwarf galaxies, including those collected by theR-Process Alliance. We conclude that observed [Eu/Fe] and [Eu/Mg] ratios can be employed in chemical tagging of the Milky Way’s accretion history. 
    more » « less