skip to main content


Title: Hydrogen Line Shape Uncertainties in White Dwarf Model Atmospheres
For isolated white dwarf (WD) stars, fits to their observed spectra provide the most precise estimates of their effective temperatures and surface gravities. Even so, recent studies have shown that systematic offsets exist between such spectroscopic parameter determinations and those based on broadband photometry. These large discrepancies (10% in T eff , 0.1  M ⊙ in mass) provide scientific motivation for reconsidering the atomic physics employed in the model atmospheres of these stars. Recent simulation work of ours suggests that the most important remaining uncertainties in simulation-based calculations of line shapes are the treatment of 1) the electric field distribution and 2) the occupation probability (OP) prescription. We review the work that has been done in these areas and outline possible avenues for progress.  more » « less
Award ID(s):
1707419
NSF-PAR ID:
10389810
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
9
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The hydrated electron is of interest to both theorists and experimentalists as a paradigm solution-phase quantum system. Although the bulk of the theoretical work studying the hydrated electron is based on mixed quantum/classical (MQC) methods, recent advances in computer power have allowed several attempts to study this object using ab initio methods. The difficulty with employing ab initio methods for this system is that even with relatively inexpensive quantum chemistry methods such as density functional theory (DFT), such calculations are still limited to at most a few tens of water molecules and only a few picoseconds duration, leaving open the question as to whether the calculations are converged with respect to either system size or dynamical fluctuations. Moreover, the ab initio simulations of the hydrated electron that have been published to date have provided only limited analysis. Most works calculate the electron’s vertical detachment energy, which can be compared to experiment, and occasionally the electronic absorption spectrum is also computed. Structural features, such as pair distribution functions, are rare in the literature, with the majority of the structural analysis being simple statements that the electron resides in a cavity, which are often based only on a small number of simulation snapshots. Importantly, there has been no ab initio work examining the temperature-dependent behavior of the hydrated electron, which has not been satisfactorily explained by MQC simulations. In this work, we attempt to remedy this situation by running DFT-based ab initio simulations of the hydrated electron as a function of both box size and temperature. We show that the calculated properties of the hydrated electron are not converged even with simulation sizes up to 128 water molecules and durations of several tens of picoseconds. The simulations show significant changes in the water coordination and solvation structure with box size. Our temperature-dependent simulations predict a red-shift of the absorption spectrum (computed using TD-DFT with an optimally tuned range-separated hybrid functional) with increasing temperature, but the magnitude of the predicted red-shift is larger than that observed experimentally, and the absolute position of the calculated spectra are off by over half an eV. The spectral red-shift at high temperatures is accompanied by both a partial loss of structure of the electron’s central cavity and an increased radius of gyration that pushes electron density onto and beyond the first solvation shell. Overall, although ab initio simulations can provide some insights into the temperature-dependent behavior of the hydrated electron, the simulation sizes and level of quantum chemistry theory that are currently accessible are inadequate for correctly describing the experimental properties of this fascinating object. 
    more » « less
  2. ABSTRACT

    The second data release of ESA’s Gaia mission revealed numerous signatures of disequilibrium in the Milky Way’s disc. These signatures are seen in the planar kinematics of stars, which manifest as ridges and ripples in R–vϕ, and in vertical kinematics, where a prominent spiral is seen in the z–vz phase space. In this work, we show an equivalent ΔR–vR phase spiral forms following a perturbation to the disc. We demonstrate the behaviour of the ΔR–vR phase spirals in both a toy model and a high-resolution N-body simulation of a satellite interaction. We then confront these models with the data, where we find partial ΔR–vR phase spirals in the Solar neighbourhood using the most recent data from Gaia DR3. This structure indicates ongoing radial phase mixing in the Galactic disc, suggesting a history of recent perturbations, either through internal or external (e.g. satellite) processes. Future work modelling the z–vz and ΔR–vR phase spirals in tandem may help break degeneracy’s between possible origins of the perturbation.

     
    more » « less
  3. To avoid interruption of experiment and risk of infection, wireless power transfer (WPT) techniques have been used to eliminate the bulky wires and batteries attached to the animals in rodent electrophysiological applications for long-term in-vivo electrophysiological recordings. Headstage-based neuromodulation device has become one of the most popular methods for neural stimulation in recent times. In this work, a wireless power transfer system is designed which provides a constant power to a headstage based optogenetic stimulator. The proposed research is composed of two parts: i) a unidirectional 28 cm × 21 cm phased array transmitter antenna, and ii) an electrically small bi-directional 2.4 cm × 2.4 cm receiver antenna. A phased array transmitter antenna is designed to provide a uniform power transmission over the 27 cm × 23 cm × 16 cm rat behavioral cage area. The proposed WPT scheme utilizes a near-field power transmission scheme at 2.4 GHz frequency. Simulation results show that the transmitter antenna achieves a -24 dB and receiver antenna achieves a −27 dB return loss (S 11 ) at the resonating frequency. The proposed WPT system shows a maximum of 24.5% power transfer efficiency (PTE) when the receiver is in the center position and is 10 cm distance apart from the transmitter, which is much higher compared to the other state-of-the-art works. The transmitter antenna steers beam from −21° to 27° in ϕ axis and −108° to 74° in θ axis which covers the maximum 6.27 cm 2 area of the cage. The preliminary simulation results of the proposed WPT module show a better prospect for future optogenetics based applications. 
    more » « less
  4. Abstract

    With the most trans-iron elements detected of any star outside the solar system, HD 222925 represents the most complete chemical inventory among metal-poor stars enhanced with elements made by the rapid neutron capture (“r”) process. As such, HD 222925 may be a new “template” for the observationalr-process, where before the (much higher-metallicity) solarr-process residuals were used. In this work, we test under which conditions a single site accounts for the entire elementalr-process abundance pattern of HD 222925. We found that several of our tests—with the single exception of the black hole–neutron star merger case—challenge the single-site assumption by producing an ejecta distribution that is highly constrained, in disagreement with simulation predictions. However, we found that ejecta distributions that are more in line with simulations can be obtained under the condition that the nuclear data near the secondr-process peak are changed. Therefore, for HD 222925 to be a canonicalr-process template likely as a product of a single astrophysical source, the nuclear data need to be reevaluated. The new elemental abundance pattern of HD 222925—including the abundances obtained from space-based, ultraviolet (UV) data—call for a deeper understanding of both astrophysicalr-process sites and nuclear data. Similar UV observations of additionalr-process–enhanced stars will be required to determine whether the elemental abundance pattern of HD 222925 is indeed a canonical template (or an outlier) for ther-process at low metallicity.

     
    more » « less
  5. ABSTRACT

    White dwarf binaries with orbital periods below 1 h will be the most numerous sources for the space-based gravitational wave detector Laser Interferometer Space Antenna (LISA). Based on thousands of individually resolved systems, we will be able to constrain binary evolution and provide a new map of the Milky Way and its close surroundings. In this paper we predict the main properties of populations of different types of detached white dwarf binaries detected by LISA over time. For the first time, we combine a high-resolution cosmological simulation of a Milky Way-mass galaxy (taken from the FIRE project) with a binary population synthesis model for low- and intermediate-mass stars. Our Galaxy model therefore provides a cosmologically realistic star formation and metallicity history for the Galaxy and naturally produces its different components such as the thin and thick disc, the bulge, the stellar halo, and satellite galaxies and streams. Thanks to the simulation, we show how different Galactic components contribute differently to the gravitational wave signal, mostly due to their typical age and distance distributions. We find that the dominant LISA sources will be He–He double white dwarfs (DWDs) and He–CO DWDs with important contributions from the thick disc and bulge. The resulting sky map of the sources is different from previous models, with important consequences for the searches for electromagnetic counterparts and data analysis. We also emphasize that much of the science-enabling information regarding white dwarf binaries, such as the chirp mass and the sky localization, becomes increasingly rich with long observations, including an extended mission up to 8 yr.

     
    more » « less