skip to main content

Title: Asynchronous Actor-Critic for Multi-Agent Reinforcement Learning
Synchronizing decisions across multiple agents in realistic settings is problematic since it requires agents to wait for other agents to terminate and communicate about termination reliably. Ideally, agents should learn and execute asynchronously instead. Such asynchronous methods also allow temporally extended actions that can take different amounts of time based on the situation and action executed. Unfortunately, current policy gradient methods are not applicable in asynchronous settings, as they assume that agents synchronously reason about action selection at every time step. To allow asynchronous learning and decision-making, we formulate a set of asynchronous multi-agent actor-critic methods that allow agents to directly optimize asynchronous policies in three standard training paradigms: decentralized learning, centralized learning, and centralized training for decentralized execution. Empirical results (in simulation and hardware) in a variety of realistic domains demonstrate the superiority of our approaches in large multi-agent problems and validate the effectiveness of our algorithms for learning high-quality and asynchronous solutions.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Advances in neural information processing systems
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In real-world multi-robot systems, performing high-quality, collaborative behaviors requires robots to asynchronously reason about high-level action selection at varying time durations. Macro-Action Decentralized Partially Observable Markov Decision Processes (MacDec-POMDPs) provide a general framework for asynchronous decision making under uncertainty in fully cooperative multi-agent tasks. However, multi-agent deep reinforcement learning methods have only been developed for (synchronous) primitive-action problems. This paper proposes two Deep Q-Network (DQN) based methods for learning decentralized and centralized macro-action-value functions with novel macro-action trajectory replay buffers introduced for each case. Evaluations on benchmark problems and a larger domain demonstrate the advantage of learning with macro-actions over primitive-actions and the scalability of our approaches. 
    more » « less
  2. Learning safe solutions is an important but challenging problem in multi-agent reinforcement learning (MARL). Shielded reinforcement learning is one approach for preventing agents from choosing unsafe actions. Current shielded reinforcement learning methods for MARL make strong assumptions about communication and full observability. In this work, we extend the formalization of the shielded reinforcement learning problem to a decentralized multi-agent setting. We then present an algorithm for decomposition of a centralized shield, allowing shields to be used in such decentralized, communication-free environments. Our results show that agents equipped with decentralized shields perform comparably to agents with centralized shields in several tasks, allowing shielding to be used in environments with decentralized training and execution for the first time. 
    more » « less
  3. null (Ed.)
    Surgical robots for laparoscopy consist of several patient side slave manipulators that are controlled via surgeon operated master telemanipulators. Commercial surgical robots do not perform any sub-tasks - even of repetitive or noninvasive nature - autonomously or provide intelligent assistance. While this is primarily due to safety and regulatory reasons, the state of such automation intelligence also lacks the reliability and robustness for use in high-risk applications. Recent developments in continuous control using Artificial Intelligence and Reinforcement Learning have prompted growing research interest in automating mundane sub-tasks. To build on this, we present an inspired Asynchronous Framework which incorporates realtime dynamic simulation - manipulable with the masters of a surgical robot and various other input devices - and interfaces with learning agents to train and potentially allow for the execution of shared sub-tasks. The scope of this framework is generic to cater to various surgical (as well as non-surgical) training and control applications. This scope is demonstrated by examples of multi-user and multi-manual applications which allow for realistic interactions by incorporating distributed control, shared task allocation and a well-defined communication pipe-line for learning agents. These examples are discussed in conjunction with the design philosophy, specifications, system-architecture and metrics of the Asynchronous Framework and the accompanying Simulator. We show the stability of Simulator while achieving real-time dynamic simulation and interfacing with several haptic input devices and a training agent at the same time. 
    more » « less
  4. Centralized Training for Decentralized Execution, where agents are trained offline using centralized information but execute in a decentralized manner online, has gained popularity in the multi-agent reinforcement learning community. In particular, actor-critic methods with a centralized critic and decentralized actors are a common instance of this idea. However, the implications of using a centralized critic in this context are not fully discussed and understood even though it is the standard choice of many algorithms. We therefore formally analyze centralized and decentralized critic approaches, providing a deeper understanding of the implications of critic choice. Because our theory makes unrealistic assumptions, we also empirically compare the centralized and decentralized critic methods over a wide set of environments to validate our theories and to provide practical advice. We show that there exist misconceptions regarding centralized critics in the current literature and show that the centralized critic design is not strictly beneficial, but rather both centralized and decentralized critics have different pros and cons that should be taken into account by algorithm designers 
    more » « less
  5. Centralized Training for Decentralized Execution, where agents are trained offline in a centralized fashion and execute online in a decentralized manner, has become a popular approach in Multi-Agent Reinforcement Learning (MARL). In particular, it has become popular to develop actor-critic methods that train decentralized actors with a centralized critic where the centralized critic is allowed access to global information of the entire system, including the true system state. Such centralized critics are possible given offline information and are not used for online execution. While these methods perform well in a number of domains and have become a de facto standard in MARL, using a centralized critic in this context has yet to be sufficiently analyzed theoretically or empirically. In this paper, we therefore formally analyze centralized and decentralized critic approaches, and analyze the effect of using state-based critics in partially observable environments. We derive theories contrary to the common intuition: critic centralization is not strictly beneficial, and using state values can be harmful. We further prove that, in particular, state-based critics can introduce unexpected bias and variance compared to history-based critics. Finally, we demonstrate how the theory applies in practice by comparing different forms of critics on a wide range of common multi-agent benchmarks. The experiments show practical issues such as the difficulty of representation learning with partial observability, which highlights why the theoretical problems are often overlooked in the literature. 
    more » « less