skip to main content


Title: Streams as Mirrors: Reading Subsurface Water Chemistry From Stream Chemistry
Abstract

The shallow and deep hypothesis suggests that stream concentration‐discharge (CQ) relationships are shaped by distinct source waters from different depths. Under this hypothesis, baseflows are typically dominated by groundwater and mostly reflect groundwater chemistry, whereas high flows are typically dominated by shallow soil water and mostly reflect soil water chemistry. Aspects of this hypothesis draw on applications like end member mixing analyses and hydrograph separation, yet direct data support for the hypothesis remains scarce. This work tests the shallow and deep hypothesis using co‐located measurements of soil water, groundwater, and streamwater chemistry at two intensively monitored sites, the W‐9 catchment at Sleepers River (Vermont, United States) and the Hafren catchment at Plynlimon (Wales). At both sites, depth profiles of subsurface water chemistry and stream CQ relationships for the 10 solutes analyzed are broadly consistent with the hypothesis. Solutes that are more abundant at depth (e.g., calcium) exhibit dilution patterns (concentration decreases with increasing discharge). Conversely, solutes enriched in shallow soils (e.g., nitrate) generally exhibit flushing patterns (concentration increases with increasing discharge). The hypothesis may hold broadly true for catchments that share such biogeochemical stratifications in the subsurface. Soil water and groundwater chemistries were estimated from high‐ and low‐flow stream chemistries with average relative errors ranging from 24% to 82%. This indicates that streams mirror subsurface waters: stream chemistry can be used to infer scarcely measured subsurface water chemistry, especially where there are distinct shallow and deep end members.

 
more » « less
Award ID(s):
1724171 2012123
NSF-PAR ID:
10445200
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
58
Issue:
1
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. How does the physical and chemical structure of the Critical Zone (CZ), defined as the zone from treetops to the bottom of groundwater, govern its hydro-biogeochemical functioning? Multiple lines of evidence from past and newly emerging research have prompted the shallow and deep partitioning concentration-discharge (C-Q) hypothesis. The hypothesis states that in-stream C-Q relationships are shaped by distinct source waters from flow paths at different depths. Base flows are often dominated by deep groundwater and mostly reflect groundwater chemistry, whereas high flows are often dominated by shallow soil water and thus mostly reflect soil water chemistry. The contrasts between shallow soil water versus deeper groundwater chemistry shape stream solute export patterns. In this context, the vertical connectivity that regulates the shallow and deep flow partitioning is essential in determining chemical contrasts, biogeochemical reaction rates in soils and parent rocks, and ultimately solute export patterns. This talk will highlight insights gleaned from multiple lines of recent studies that include collation of water chemistry data from soils, rocks, and streams in intensively monitored watersheds, meta-analysis of stream chemistry data at the continental scale, and integrated reactive transport modeling at the hillslope and watershed scales. The hypothesis underscores the importance of subsurface vertical structure and connectivity relative to the extensively studied horizontal connectivity. It also alludes to the potential of using streams as mirrors for subsurface water chemistry, and the potential of using C-Q relationships to infer flow paths and biogeochemical reaction rates and the response of earth’s subsurface to climate and human perturbations. Broadly, this simple conceptual framework links CZ subsurface structure to its functioning under diverse climate, geology, and land cover conditions. 
    more » « less
  2. Abstract

    How does hillslope structure (e.g., hillslope shape and permeability variation) regulate its hydro‐geochemical functioning (flow paths, solute export, chemical weathering)? Numerical reactive transport experiments and particle tracking were used to answer this question. Results underscore the first‐order control of permeability variations (with depth) on vertical connectivity (VC), defined as the fraction of water flowing into streams from below the soil zone. Where permeability decreases sharply and VC is low, >95% of water flows through the top 6 m of the subsurface, barely interacting with reactive rock at depth. High VC also elongates mean transit times (MTTs) and weathering rates. VC however is less of an influence under arid climates where long transit times drive weathering to equilibrium. The results lead to three working hypotheses that can be further tested.H1:The permeability variations with depth influence MTTs of stream water more strongly than hillslope shapes; hillslope shapes instead influence the younger fraction of stream water more.H2:High VC arising from high permeability at depths enhances weathering by promoting deeper water penetration and water‐rock interactions; the influence of VC weakens under arid climates and larger hillslopes with longer MTTs.H3:VC regulates chemical contrasts between shallow and deep waters (Cratio) and solute export patterns encapsulated in the power law slope b of concentration‐discharge (CQ) relationships.Higher VC leads to similar shallow versus deep water chemistry (Cratio∼1) and more chemostatic CQ patterns. Although supporting data already exist, these hypotheses can be further tested with carefully designed, co‐located modeling and measurements of soil, rock, and waters. Broadly, the importance of hillslope subsurface structure (e.g., permeability variation) indicate it is essential in regulating earth surface hydrogeochemical response to changing climate and human activities.

     
    more » « less
  3. Biogeochemical properties of soils play a crucial role in soil and stream chemistry throughout a watershed. How water interacts with soils during subsurface flow can have impacts on water quality, thus, it is fundamental to understand where and how certain soil water chemical processes occur within a catchment. In this study, ~200 soil samples were evaluated throughout a small catchment in the Front Range of Colorado, USA to examine spatial and vertical patterns in major soil solutes among different landscape units: riparian areas, alluvial/colluvial fans, and steep hillslopes. Solutes were extracted from the soil samples in the laboratory and analyzed for major cation (Li, K, Mg, Br, and Ca) and anion (F, Cl, NO 2 , NO 3 , PO 4 , and SO 4 ) concentrations using ion chromatography. Concentrations of most solutes were greater in near surface soils (10 cm) than in deeper soils (100 cm) across all landscape units, except for F which increased with depth, suggestive of surface accumulation processes such as dust deposition or enrichment due to biotic cycling. Potassium had the highest variation between depths, ranging from 1.04 mg/l (100 cm) to 3.13 mg/l (10 cm) sampled from riparian landscape units. Nearly every solute was found to be enriched in riparian areas where vegetation was visibly denser, with higher mean concentrations than the hillslopes and fans, except for NO 3 which had higher concentrations in the fans. Br, NO 2 , and PO 4 concentrations were often below the detectable limit, and Li and Na were not variable between depths or landscape units. Ratioed stream water concentrations (K:Na, Ca:Mg, and NO 3 :Cl) vs. discharge relationships compared to the soil solute ratios indicated a hydraulic disconnection between the shallow soils (<100 cm) and the stream. Based on the comparisons among depths and landscape units, our findings suggest that K, Ca, F, and NO 3 solutes may serve as valuable tracers to identify subsurface flowpaths as they are distinct among landscape units and depth within this catchment. However, interflow and/or shallow groundwater flow likely have little direct connection to streamflow generation. 
    more » « less
  4. Abstract. Solute concentrations in stream water vary with discharge in patterns that record complex feedbacks between hydrologic and biogeochemical processes. In a comparison of three shale-underlain headwater catchments located in Pennsylvania, USA (the forested Shale Hills Critical Zone Observatory), and Wales, UK (the peatland-dominated Upper Hafren and forest-dominated Upper Hore catchments in the Plynlimon forest), dissimilar concentration–discharge (CQ) behaviors are best explained by contrasting landscape distributions of soil solution chemistry – especially dissolved organic carbon (DOC) – that have been established by patterns of vegetation and soil organic matter (SOM). Specifically, elements that are concentrated in organic-rich soils due to biotic cycling (Mn, Ca, K) or that form strong complexes with DOC (Fe, Al) are spatially heterogeneous in pore waters because organic matter is heterogeneously distributed across the catchments. These solutes exhibit non-chemostatic behavior in the streams, and solute concentrations either decrease (Shale Hills) or increase (Plynlimon) with increasing discharge. In contrast, solutes that are concentrated in soil minerals and form only weak complexes with DOC (Na, Mg, Si) are spatially homogeneous in pore waters across each catchment. These solutes are chemostatic in that their stream concentrations vary little with stream discharge, likely because these solutes are released quickly from exchange sites in the soils during rainfall events. Furthermore, concentration–discharge relationships of non-chemostatic solutes changed following tree harvest in the Upper Hore catchment in Plynlimon, while no changes were observed for chemostatic solutes, underscoring the role of vegetation in regulating the concentrations of certain elements in the stream. These results indicate that differences in the hydrologic connectivity of organic-rich soils to the stream drive differences in concentration behavior between catchments. As such, in catchments where SOM is dominantly in lowlands (e.g., Shale Hills), we infer that non-chemostatic elements associated with organic matter are released to the stream early during rainfall events, whereas in catchments where SOM is dominantly in uplands (e.g., Plynlimon), these non-chemostatic elements are released later during rainfall events. The distribution of SOM across the landscape is thus a key component for predictive models of solute transport in headwater catchments.

     
    more » « less
  5. Abstract

    The evasion of CO2from inland waters, a major carbon source to the atmosphere, depends on dissolved inorganic carbon (DIC) concentrations. Our understanding of DIC dynamics across gradients of climate, geology, and vegetation conditions however have remained elusive. To understand its large‐scale patterns and drivers, we collated instantaneous and mean (multiyear average) DIC concentrations from about 100 rivers draining minimally‐impacted watersheds in the contiguous United States. Within individual sites, instantaneous concentrations (C) measured at daily to seasonal scales exhibit a near‐universal response to changes in river discharge (Q) in a negative power law form. High concentrations occur at low discharge when DIC‐enriched groundwater dominates river discharge; low concentrations occur under high flow when relatively DIC‐poor shallow soil water predominates river discharge. Such patterns echo the widely observed increase of soil CO2and DIC with depth and the shallow‐and‐deep hypothesis that emphasizes the importance of flow paths and source water chemistry. Across sites, mean concentrations (Cm) decrease with increasing mean discharge (Qm), a long‐term climate measure, and reachs maxima at around 200 mm/yr. A parsimonious model reveals that high mean DIC arises from soil CO2accumulation when rates of DIC‐generating reactions are relatively high compared to its export fluxes in arid climates. Although instantaneous and mean DIC concentrations similarly decrease with increasing discharge, results here highlight their distinct drivers: daily to seasonal‐scale instantaneous concentration variations (C) are controlled by subsurface CO2distribution over depth (from below), whereas long‐term mean concentrations (Cm) are regulated by climate (from above). The results emphasize the significance of land‐river connectivity via subsurface flow paths. They also underscore the importance of characterizing subsurface CO2distribution to illuminate belowground processes in order to project the future of water and carbon cycles in a warming climate.

     
    more » « less