skip to main content


Title: Patterns and determinants of the global herbivorous mycobiome
In spite of their indispensable role in host nutrition, the anaerobic gut fungal (AGF) component of the herbivorous gut microbiome remains poorly characterized. To examine global patterns and determinants of AGF diversity, we generated and analyzed an amplicon dataset from 661 fecal samples from 34 animal species, 9 families, and 6 continents. We identified 56 novel genera, greatly expanding AGF diversity beyond current estimates. Both stochastic (homogenizing dispersal and drift) and deterministic (homogenizing selection) processes played an integral role in shaping AGF communities, with a higher level of stochasticity observed in foregut fermenters. Community structure analysis revealed a distinct pattern of phylosymbiosis, where host-associated (animal species, family, and gut type), rather than ecological (domestication status and biogeography) factors predominantly shaped the community. Hindgut fermenters exhibited stronger and more specific fungal-host associations, compared to broader mostly non-host specific associations in foregut fermenters. Transcriptomics-enabled phylogenomic and molecular clock analyses of 52 strains from 14 genera indicated that most genera with preferences for hindgut hosts evolved earlier (44-58 Mya), while those with preferences for foregut hosts evolved more recently (22-32 Mya). This pattern is in agreement with the sole dependence of herbivores on hindgut fermentation past the Cretaceous-Paleogene (K-Pg) extinction event through the Paleocene and Eocene, and the later rapid evolution of animals employing foregut fermentation strategy during the early Miocene. Only a few AGF genera deviated from this pattern of co-evolutionary phylosymbiosis, by exhibiting preferences suggestive of post-evolutionary environmental filtering. Our results greatly expand the documented scope of AGF diversity and provide an ecologically and evolutionary-grounded model to explain the observed patterns of AGF diversity in extant animal hosts.  more » « less
Award ID(s):
2029478
NSF-PAR ID:
10390041
Author(s) / Creator(s):
Date Published:
Journal Name:
Nature communications
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Despite their role in host nutrition, the anaerobic gut fungal (AGF) component of the herbivorous gut microbiome remains poorly characterized. Here, to examine global patterns and determinants of AGF diversity, we generate and analyze an amplicon dataset from 661 fecal samples from 34 mammalian species, 9 families, and 6 continents. We identify 56 novel genera, greatly expanding AGF diversity beyond current estimates (31 genera and candidate genera). Community structure analysis indicates that host phylogenetic affiliation, not domestication status and biogeography, shapes the community rather than. Fungal-host associations are stronger and more specific in hindgut fermenters than in foregut fermenters. Transcriptomics-enabled phylogenomic and molecular clock analyses of 52 strains from 14 genera indicate that most genera with preferences for hindgut hosts evolved earlier (44-58 Mya) than those with preferences for foregut hosts (22-32 Mya). Our results greatly expand the documented scope of AGF diversity and provide an ecologically and evolutionary-grounded model to explain the observed patterns of AGF diversity in extant animal hosts.

     
    more » « less
  2. Abstract

    Establishment of microbial communities in neonatal calves is vital for their growth and overall health. While this process has received considerable attention for bacteria, our knowledge on temporal progression of anaerobic gut fungi (AGF) in calves is lacking. Here, we examined AGF communities in faecal samples from six dairy cattle collected at 24 different time points during the pre‐weaning (days 1–48), weaning (days 48–60), and post‐weaning (days 60–360) phases. Quantitative polymerase chain reaction indicated that AGF colonisation occurs within 24 h after birth, with loads slowly increasing during pre‐weaning and weaning, then drastically increasing post‐weaning. Culture‐independent amplicon surveys identified higher alpha diversity during pre‐weaning/weaning, compared to post‐weaning. AGF community structure underwent a drastic shift post‐weaning, from a community enriched in genera commonly encountered in hindgut fermenters to one enriched in genera commonly encountered in adult ruminants.Comparison of AGF community between calves day 1 post‐birth and their mothers suggest a major role for maternal transmission, with additional input from cohabitating subjects. This distinct pattern of AGF progression could best be understood in‐light of their narrower niche preferences, metabolic specialisation, and physiological optima compared to bacteria, hence eliciting a unique response to changes in feeding pattern and associated structural GIT development during maturation.

     
    more » « less
  3. Abstract

    Anaerobic gut fungi (AGF,Neocallimastigomycota) reside in the alimentary tract of herbivores. While their presence in mammals is well documented, evidence for their occurrence in non-mammalian hosts is currently sparse. Culture-independent surveys of AGF in tortoises identified a unique community, with three novel deep-branching genera representing >90% of sequences in most samples. Representatives of all genera were successfully isolated under strict anaerobic conditions. Transcriptomics-enabled phylogenomic and molecular dating analyses indicated an ancient, deep-branching position in the AGF tree for these genera, with an evolutionary divergence time estimate of 104-112 million years ago (Mya). Such estimates push the establishment of animal-Neocallimastigomycotasymbiosis from the late to the early Cretaceous. Further, tortoise-associated isolates (T-AGF) exhibited limited capacity for plant polysaccharides metabolism and lacked genes encoding several carbohydrate-active enzyme (CAZyme) families. Finally, we demonstrate that the observed curtailed degradation capacities and reduced CAZyme repertoire is driven by the paucity of horizontal gene transfer (HGT) in T-AGF genomes, compared to their mammalian counterparts. This reduced capacity was reflected in an altered cellulosomal production capacity in T-AGF. Our findings provide insights into the phylogenetic diversity, ecological distribution, evolutionary history, evolution of fungal-host nutritional symbiosis, and dynamics of genes acquisition inNeocallimastigomycota.

     
    more » « less
  4. Abstract

    Differences in the bacterial communities inhabiting mammalian gut microbiomes tend to reflect the phylogenetic relatedness of their hosts, a pattern dubbed phylosymbiosis. Although most research on this pattern has compared the gut microbiomes of host species across biomes, understanding the evolutionary and ecological processes that generate phylosymbiosis requires comparisons across phylogenetic scales and under similar ecological conditions. We analysed the gut microbiomes of 14 sympatric small mammal species in a semi‐arid African savanna, hypothesizing that there would be a strong phylosymbiotic pattern associated with differences in their body sizes and diets. Consistent with phylosymbiosis, microbiome dissimilarity increased with phylogenetic distance among hosts, ranging from congeneric sets of mice and hares that did not differ significantly in microbiome composition to species from different taxonomic orders that had almost no gut bacteria in common. While phylosymbiosis was detected among just the 11 species of rodents, it was substantially weaker at this scale than in comparisons involving all 14 species together. In contrast, microbiome diversity and composition were generally more strongly correlated with body size, dietary breadth, and dietary overlap in comparisons restricted to rodents than in those including all lineages. The starkest divides in microbiome composition thus reflected the broad evolutionary divergence of hosts, regardless of body size or diet, while subtler microbiome differences reflected variation in ecologically important traits of closely related hosts. Strong phylosymbiotic patterns arose deep in the phylogeny, and ecological filters that promote functional differentiation of cooccurring host species may disrupt or obscure this pattern near the tips.

     
    more » « less
  5. Rudi, Knut (Ed.)
    ABSTRACT Marine herbivorous fish that feed primarily on macroalgae, such as those from the genus Kyphosus, are essential for maintaining coral health and abundance on tropical reefs. Here, deep metagenomic sequencing and assembly of gut compartment-specific samples from three sympatric, macroalgivorous Hawaiian kyphosid species have been used to connect host gut microbial taxa with predicted protein functional capacities likely to contribute to efficient macroalgal digestion. Bacterial community compositions, algal dietary sources, and predicted enzyme functionalities were analyzed in parallel for 16 metagenomes spanning the mid- and hindgut digestive regions of wild-caught fishes. Gene colocalization patterns of expanded carbohydrate (CAZy) and sulfatase (SulfAtlas) digestive enzyme families on assembled contigs were used to identify likely polysaccharide utilization locus associations and to visualize potential cooperative networks of extracellularly exported proteins targeting complex sulfated polysaccharides. These insights into the gut microbiota of herbivorous marine fish and their functional capabilities improve our understanding of the enzymes and microorganisms involved in digesting complex macroalgal sulfated polysaccharides. IMPORTANCE This work connects specific uncultured bacterial taxa with distinct polysaccharide digestion capabilities lacking in their marine vertebrate hosts, providing fresh insights into poorly understood processes for deconstructing complex sulfated polysaccharides and potential evolutionary mechanisms for microbial acquisition of expanded macroalgal utilization gene functions. Several thousand new marine-specific candidate enzyme sequences for polysaccharide utilization have been identified. These data provide foundational resources for future investigations into suppression of coral reef macroalgal overgrowth, fish host physiology, the use of macroalgal feedstocks in terrestrial and aquaculture animal feeds, and the bioconversion of macroalgae biomass into value-added commercial fuel and chemical products. 
    more » « less