The Starlink satellites launched on 3 February 2022 were lost before they fully arrived in their designated orbits. The loss was attributed to two moderate geomagnetic storms that occurred consecutively on 3–4 February. We investigate the thermospheric neutral mass density variation during these storms with the Multiscale Atmosphere‐Geospace Environment (MAGE) model, a first‐principles, fully coupled geospace model. Simulated neutral density enhancements are validated by Swarm satellite measurements at the altitude of 400–500 km. Comparison with standalone TIEGCM and empirical NRLMSIS 2.0 and DTM‐2013 models suggests better performance by MAGE in predicting the maximum density enhancement and resolving the gradual recovery process. Along the Starlink satellite orbit in the middle thermosphere (∼200 km altitude), MAGE predicts up to 150% density enhancement near the second storm peak while standalone TIEGCM, NRLMSIS 2.0, and DTM‐2013 suggest only ∼50% increase. MAGE also suggests altitudinal, longitudinal, and latitudinal variability of storm‐time percentage density enhancement due to height dependent Joule heating deposition per unit mass, thermospheric circulation changes, and traveling atmospheric disturbances. This study demonstrates that a moderate storm can cause substantial density enhancement in the middle thermosphere. Thermospheric mass density strongly depends on the strength, timing, and location of high‐latitude energy input, which cannot be fully reproduced with empirical models. A physics‐based, fully coupled geospace model that can accurately resolve the high‐latitude energy input and its variability is critical to modeling the dynamic response of thermospheric neutral density during storm time.
The upper boundary height of the traditional community general circulation model of the ionosphere‐thermosphere system is too low to be applied to the topside ionosphere/thermosphere study. In this study, the National Center for Atmospheric Research Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (NCAR‐TIEGCM) was successfully extended upward by four scale heights from 400–600 km to 700–1,200 km depending on solar activity, named TIEGCM‐X. The topside ionosphere and thermosphere simulated by TIEGCM‐X agree well with the observations derived from a topside sounder and satellite drag data. In addition, the neutral density, temperature, and electron density simulated by TIEGCM‐X are morphologically consistent with the NCAR‐TIEGCM simulations before extension. The latitude‐altitude distribution of the equatorial ionization anomaly derived from TIEGCM‐X is more reasonable. During geomagnetic storm events, the thermospheric responses of TIEGCM‐X are similar to NCAR‐TIEGCM. However, the ionospheric storm effects in TIEGCM‐X are stronger than those in NCAR‐TIEGCM and are even opposites at some middle and low latitudes due to the presence of more closed magnetic field lines. Defense Meteorological Satellite Program observations prove that the ionospheric storm effect of TIEGCM‐X is more reasonable. The well‐validated TIEGCM‐X has significant potential applications in ionospheric/thermospheric studies, such as the responses to storms, low‐latitude dynamics, and data assimilation.
more » « less- Award ID(s):
- 2033787
- PAR ID:
- 10390068
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Space Weather
- Volume:
- 20
- Issue:
- 11
- ISSN:
- 1542-7390
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Using the
High attitude Interferometer WIND observation balloon and Antarctic Jang Bogo station high latitude conjugate observations of the thermospheric winds we investigate the seasonal and hemispheric differences between the northern and southern hemispheres in June 2018. We found that the summer (northern) hemisphere dayside meridional winds have a double‐hump feature, whereas in the winter (southern) hemisphere the dayside meridional winds have a single hump feature. We attribute that to stronger summer, perhaps, northern hemisphere cusp heating. We also compared the observation with NCAR Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) model. The TIEGCM reproduced the double‐hump feature because of added cusp heating. The summer hemisphere has stronger anti‐sunward winds. This is the first time we have very high latitude conjugate thermospheric wind observations. -
Abstract Previous studies have shown that solar flares can significantly affect Earth's ionosphere and induce ion upflow with a magnitude of ∼110 m/s in the topside ionosphere (∼570 km) at Millstone Hill (42.61°N, 71.48°W). We use simulations from the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIEGCM) and observations from Incoherent Scatter Radar (ISR) at Millstone Hill to reveal the mechanism of ionospheric ion upflow near the X9.3 flare peak (07:16 LT) on 6 September 2017. The ISR observed ionospheric upflow was captured by the TIEGCM in both magnitude and morphology. The term analysis of the F‐region ion continuity equation during the solar flare shows that the ambipolar diffusion enhancement is the main driver for the upflow in the topside ionosphere, while ion drifts caused by electric fields and neutral winds play a secondary role. Further decomposition of the ambipolar diffusive velocity illustrates that flare‐induced changes in the vertical plasma density gradient is responsible for ion upflow. The changes in the vertical plasma density gradient are mainly due to solar extreme ultraviolet (EUV, 15.5–79.8 nm) induced electron density and temperature enhancements at the F2‐region ionosphere with a minor and indirectly contribution from X‐ray (0–15.5 nm) and ultraviolet (UV, 79.8–102.7 nm).
-
Abstract Recent evidence has revealed that strong coupling between the lower atmosphere and the thermosphere (100 km) occurs on intra‐seasonal (IS) timescales ( 30–90 days). The Madden‐Julian Oscillation (MJO), a key source of IS variability in tropical convection and circulation, influences the generation and propagation of atmospheric tides and is believed to be a significant driver of thermospheric IS oscillations (ISOs). However, limited satellite observations in the “thermospheric gap” (100–300 km) and challenges faced by numerical models in characterizing this region have hindered a comprehensive understanding of this connection. This study uses an Ionospheric Connection Explorer (ICON)‐adapted version of the Thermosphere Ionosphere Electrodynamics General Circulation Model, incorporating lower boundary tides from Michelson Interferometer for Global High‐resolution Thermospheric Imaging (MIGHTI) observations, to quantify the impact of the upward‐propagating tidal spectrum on thermospheric ISOs and elucidate connections to the MJO. Thermospheric zonal and diurnal mean zonal winds exhibit prominent ( 20 m/s) tidally driven ISOs throughout 2020–2021, largest at low latitudes near 110–150 km altitude. Correlation analyses confirm a robust connection between thermospheric ISOs, tides, and the MJO. Additionally, Hovmöller diagrams show eastward tidal propagation consistent with the MJO and concurrent Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) observations. This study demonstrates that vertically propagating tides play a crucial role in linking IS variability from the lower atmosphere to the thermosphere, with the MJO identified as a primary driver of this whole‐atmosphere teleconnection. Understanding these connections is vital for advancing our knowledge in space physics, particularly regarding the dynamics of the upper atmosphere and ionosphere.
-
Abstract In recent decades, significant efforts have been made to characterize and understand the global pattern of ionospheric long‐term trend. However, little attention has been paid to the topside ionosphere trend. In this study, the unique in situ data measured by series Defense Meteorological Satellite Program (DMSP) satellites were utilized to derive the long‐term trend of the topside ionosphere for the first time. We checked carefully data quality, gap, and consistency between different satellites for both electron density and ion temperature, and compared the techniques of artificial neuron network (ANN) and multiple linear regression methods for deriving the trend. The electron density (
) trend in the middle and low latitudes at ~860 km around 18 MLT was derived using the ANN method from 1995–2017. The trend from DMSP observations has a mean magnitude ranging fromN e ~ − 2% to~2% per decade, with clear seasonal, latitude and longitude variations. The derived trend was evaluated by directly comparing with the simulated trend at 500 km from the NCAR‐TIEGCM driven by realistic changes ofCO2 level and geomagnetic field. The observed and simulated trends have similar geographic distribution patterns at 18 MLT. The good agreement between the observed trend around 860 km and the simulated trend near 500 km implies that the physical processes controlling the trends above the peak height might be identical. Further control simulations show that the geomagnetic field secular variation is the dominant factor of the electron density trend at around 500 km, rather than theN e CO2 long‐term enhancement.