skip to main content


Title: A barrier too far: Understanding the role of intersection crossing distance on bicycle rider behavior in Chicago

For a variety of environmental, health, and social reasons, there is a pressing need to reduce the automobile dependence of American cities. Bicycles are well suited to help achieve this goal. However, perceptions of rider safety present a large hindrance toward increased bicycle adoption. These perceptions are largely influenced by the design of our current road infrastructure, including the crossing distances of large intersections. In this paper, we examine the role of intersection crossing distances in modifying rider behavior through the construction of a novel dataset integrating street widths and probable trip routes from Chicago’s Divvy bikeshare system. We compare real trips to synthetic trips that are not influenced by the width of intersections and exploit behavior differences that result from the semi-dockless nature of the bikeshare system. Our analysis reveals that bikeshare riders do avoid large intersections in limited circumstances; however, these preferences appear to be heavily outweighed by the relative spatial positions of origins and destinations (i.e., the urban morphology of Chicago). Our results suggest that specific infrastructural investments such as protected intersections could prove feasible alternatives to reduce the perception and safety concerns associated with large road barriers and enhance the attractiveness of non-motorized mobility.

 
more » « less
NSF-PAR ID:
10390119
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Environment and Planning B: Urban Analytics and City Science
Volume:
50
Issue:
8
ISSN:
2399-8083
Format(s):
Medium: X Size: p. 2118-2132
Size(s):
["p. 2118-2132"]
Sponsoring Org:
National Science Foundation
More Like this
  1. This study investigated electric-scooter (e-scooter) rider behaviors and preferences to inform ways to increase safety for e-scooter riders. Data was collected from 329 e-scooter riders via two online and one in-person survey. Survey questions considered rider roadway infrastructure preferences, safety perceptions, and helmet-wearing behavior. Protected bike lanes were more commonly indicated as the safest infrastructure (62.4%) but were less likely to be the most preferred infrastructure (49.7%). Sidewalks were better matched between riders, indicating them as their preferred riding infrastructure (22.7%) and the perceived safest riding infrastructure (24.5%). Riders had low feelings of safety and preference for riding on major/neighborhood streets or on unprotected bike lanes. Riders reported significant concern about being hit by a moving vehicle, running into a pothole/rough roadway, and running into a moving vehicle. In line with the Theory of Planned Behavior, a significant relationship was found between the frequency of riding and helmet-wearing behavior, with more frequent riders being more likely to wear helmets. Findings suggest that existing roadway infrastructure may pose safety challenges and encourage rider-selected workarounds. Public policy may consider emphasizing protected bicycle lane development, rather than helmet mandates, to support e-scooter riding safety for all vulnerable road users.

     
    more » « less
  2. Cycling as a mode of transportation has been recording an upward trend in both the U.S. and Europe. Unfortunately, the safety of cyclists has been a point of growing concern. Data from the National Highway Traffic Safety Administration (NHTSA) show that the crashes that occur during the events of motorists overtaking cyclists was one of the leading categories involving cyclists in fatal crashes. In support of the efforts to understand the driving behavior of drivers of motorized vehicles while overtaking cyclists, this research project is aimed at developing an algorithm to identify the overtaking events. Most existing quantitative studies on cycling safety leverage instrumented bicycles or vehicles with sensors for extracting naturalistic driving trajectories. Whereas we use data from a recent research that provides naturalistic driving trajectories of road users collected at select intersections in urban areas in Germany using drones equipped with cameras. Using these videos with a data frequency of 25 Hz, the authors of this study have output inD dataset. The inD dataset contains trajectories of road users that are captured in form of coordinates on a two-dimensional plane obtained from the ariel or bird's eye view of the road. Additionally, the data also captures velocity, acceleration, heading angles, dimensions of driver's vehicle etc. Overtaking can be thought of as four phases of approaching, steering away, passing, and returning. Using the inD dataset, we have developed an algorithm to identify events when a driver of motor vehicle overtakes a cyclist. This work fits into our broader goal to contribute to the body of knowledge for improving road safety of cyclists. The work is expected to provide inputs to governmental/ traffic authorities in aspects such as design of intersections and design of bicycle lanes by providing insights into overtaking events. 
    more » « less
  3. Abstract

    Rapid advances in vehicle automation and communication technologies enable connected autonomous vehicles (CAVs) to cross intersections cooperatively, which could significantly improve traffic throughput and safety at intersections. Virtual platooning, designed upon car‐following behavior, is one of the promising control methods to promote cooperative intersection crossing of CAVs. Nevertheless, demand variation raises safety and stability concerns when CAVs adopt a virtual platooning control approach. Along this line, this study proposes an adaptive vehicle control method to facilitate the formation of a virtual platoon and the cooperative crossing of CAVs, factoring demand variations at an isolated intersection. This study derives the stability conditions of virtual CAV platoons depending on the time‐varying traffic demand. Based on the derived stability conditions, an optimization model is proposed to adaptively control CAVs dynamics by balancing approaching traffic mobility and safety to enhance the reliability of cooperative crossing at intersections. The simulation results show that, compared to the nonadaptive control, our proposed method can increase the intersection throughput by 18.2%. Also, time‐to‐collision results highlight the advantages of the proposed adaptive control in securing traffic safety.

     
    more » « less
  4. Eleni Papageorgiou (Ed.)
    Background

    Research on task performance under visual field loss is often limited due to small and heterogenous samples. Simulations of visual impairments hold the potential to account for many of those challenges. Digitally altered pictures, glasses, and contact lenses with partial occlusions have been used in the past. One of the most promising methods is the use of a gaze-contingent display that occludes parts of the visual field according to the current gaze position. In this study, the gaze-contingent paradigm was implemented in a static driving simulator to simulate visual field loss and to evaluate parallels in the resulting driving and gaze behavior in comparison to patients.

    Methods

    The sample comprised 15 participants without visual impairment. All the subjects performed three drives: with full vision, simulated left-sided homonymous hemianopia, and simulated right-sided homonymous hemianopia, respectively. During each drive, the participants drove through an urban environment where they had to maneuver through intersections by crossing straight ahead, turning left, and turning right.

    Results

    The subjects reported reduced safety and increased workload levels during simulated visual field loss, which was reflected in reduced lane position stability and greater absence of large gaze movements. Initial compensatory strategies could be found concerning a dislocated gaze position and a distorted fixation ratio toward the blind side, which was more pronounced for right-sided visual field loss. During left-sided visual field loss, the participants showed a smaller horizontal range of gaze positions, longer fixation durations, and smaller saccadic amplitudes compared to right-sided homonymous hemianopia and, more distinctively, compared to normal vision.

    Conclusion

    The results largely mirror reports from driving and visual search tasks under simulated and pathological homonymous hemianopia concerning driving and scanning challenges, initially adopted compensatory strategies, and driving safety. This supports the notion that gaze-contingent displays can be a useful addendum to driving simulator research with visual impairments if the results are interpreted considering methodological limitations and inherent differences to the pathological impairment.

     
    more » « less
  5. Curb space is one of the busiest areas in urban road networks. Especially in recent years, the rapid increase of ride-hailing trips and commercial deliveries has induced massive pick-ups/drop-offs (PUDOs), which occupy the limited curb space that was designed and built decades ago. These PUDOs could jam curbside utilization and disturb the mainline traffic flow, evidently leading to significant negative societal externalities. However, there is a lack of an analytical framework that rigorously quantifies and mitigates the congestion effect of PUDOs in the system view, particularly with little data support and involvement of confounding effects. To bridge this research gap, this paper develops a rigorous causal inference approach to estimate the congestion effect of PUDOs on general regional networks. A causal graph is set to represent the spatiotemporal relationship between PUDOs and traffic speed, and a double and separated machine learning (DSML) method is proposed to quantify how PUDOs affect traffic congestion. Additionally, a rerouting formulation is developed and solved to encourage passenger walking and traffic flow rerouting to achieve system optimization. Numerical experiments are conducted using real-world data in the Manhattan area. On average, 100 additional units of PUDOs in a region could reduce the traffic speed by 3.70 and 4.54 miles/hour (mph) on weekdays and weekends, respectively. Rerouting trips with PUDOs on curb space could respectively reduce the system-wide total travel time (TTT) by 2.44% and 2.12% in Midtown and Central Park on weekdays. A sensitivity analysis is also conducted to demonstrate the effectiveness and robustness of the proposed framework.

    Funding: The work described in this paper was supported by the National Natural Science Foundation of China [Grant 52102385], grants from the Research Grants Council of the Hong Kong Special Administrative Region, China [Grants PolyU/25209221 and PolyU/15206322], a grant from the Otto Poon Charitable Foundation Smart Cities Research Institute (SCRI) at the Hong Kong Polytechnic University [Grant P0043552], and a grant from Hong Kong Polytechnic University [Grant P0033933]. S. Qian was supported by a National Science Foundation Grant [Grant CMMI-1931827].

    Supplemental Material: The e-companion is available at https://doi.org/10.1287/trsc.2022.0195 .

     
    more » « less