skip to main content


Title: Experimental colitis promotes sustained, sex-dependent, T-cell-associated neuroinflammation and parkinsonian neuropathology
Abstract Background

The etiology of sporadic Parkinson’s disease (PD) remains uncertain, but genetic, epidemiological, and physiological overlap between PD and inflammatory bowel disease suggests that gut inflammation could promote dysfunction of dopamine-producing neurons in the brain. Mechanisms behind this pathological gut-brain effect and their interactions with sex and with environmental factors are not well understood but may represent targets for therapeutic intervention.

Methods

We sought to identify active inflammatory mechanisms which could potentially contribute to neuroinflammation and neurological disease in colon biopsies and peripheral blood immune cells from PD patients. Then, in mouse models, we assessed whether dextran sodium sulfate-mediated colitis could exert lingering effects on dopaminergic pathways in the brain and whether colitis increased vulnerability to a subsequent exposure to the dopaminergic neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We assessed the involvement of inflammatory mechanisms identified in the PD patients in colitis-related neurological dysfunction in male and female mice, utilizing mice lacking the Regulator of G-Protein Signaling 10 (RGS10)—an inhibitor of nuclear factor kappa B (NFκB)—to model enhanced NFκB activity, and mice in which CD8+T-cells were depleted.

Results

High levels of inflammatory markers includingCD8Band NFκB p65 were found in colon biopsies from PD patients, and reduced levels of RGS10 were found in immune cells in the blood. Male mice that experienced colitis exhibited sustained reductions in tyrosine hydroxylase but not in dopamine as well as sustained CD8+T-cell infiltration and elevatedIfngexpression in the brain. CD8+T-cell depletion prevented colitis-associated reductions in dopaminergic markers in males. In both sexes, colitis potentiated the effects of MPTP. RGS10 deficiency increased baseline intestinal inflammation, colitis severity, and neuropathology.

Conclusions

This study identifies peripheral inflammatory mechanisms in PD patients and explores their potential to impact central dopaminergic pathways in mice. Our findings implicate a sex-specific interaction between gastrointestinal inflammation and neurologic vulnerability that could contribute to PD pathogenesis, and they establish the importance of CD8+T-cells in this process in male mice.

Graphical abstract 
more » « less
NSF-PAR ID:
10390130
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Acta Neuropathologica Communications
Volume:
9
Issue:
1
ISSN:
2051-5960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). In this study, we generated a transgenic model by crossing germline Parkin–/–mice with PolgAD257Amice, an established model of premature aging and mitochondrial stress. We hypothesized that loss of Parkin–/–in PolgAD257A/D257Amice would exacerbate mitochondrial dysfunction, leading to loss of dopamine neurons and nigral-striatal specific neurobehavioral motor dysfunction. We found that aged Parkin–/–/PolgAD257A/D257Amale and female mice exhibited severe behavioral deficits, nonspecific to the nigral-striatal pathway, with neither dopaminergic neurodegeneration nor reductions in striatal dopamine. We saw no difference in expression levels of nuclear-encoded subunits of mitochondrial markers and mitochondrial Complex I and IV activities, although we did observe substantial reductions in mitochondrial-encoded COX41I, indicating mitochondrial dysfunction as a result of PolgAD257A/D257AmtDNA mutations. Expression levels of mitophagy markers LC3I/LC3II remained unchanged between cohorts, suggesting no overt mitophagy defects. Expression levels of the parkin substrates, VDAC, NLRP3, and AIMP2 remained unchanged, suggesting no parkin dysfunction. In summary, we were unable to observe dopaminergic neurodegeneration with corresponding nigral-striatal neurobehavioral deficits, nor Parkin or mitochondrial dysfunction in Parkin–/–/PolgAD257A/D257Amice. These findings support a lack of synergism of Parkin loss on mitochondrial dysfunction in mouse models of mitochondrial deficits.

    SIGNIFICANCE STATEMENTProducing a mouse model of Parkinson's disease (PD) that is etiologically relevant, recapitulates clinical hallmarks, and exhibits reproducible results is crucial to understanding the underlying pathology and in developing disease-modifying therapies. Here, we show that Parkin–/–/PolgAD257A/D257Amice, a previously reported PD mouse model, fails to reproduce a Parkinsonian phenotype. We show that these mice do not display dopaminergic neurodegeneration nor nigral-striatal-dependent motor deficits. Furthermore, we report that Parkin loss does not synergize with mitochondrial dysfunction. Our results demonstrate that Parkin–/–/PolgAD257A/D257Amice are not a reliable model for PD and adds to a growing body of work demonstrating that Parkin loss does not synergize with mitochondrial dysfunction in mouse models of mitochondrial deficits.

     
    more » « less
  2. Objective

    Cutaneous inflammation can signal disease in juvenile dermatomyositis (DM) and childhood‐onset systemic lupus erythematosus (cSLE), but we do not fully understand cellular mechanisms of cutaneous inflammation. In this study, we used imaging mass cytometry to characterize cutaneous inflammatory cell populations and cell–cell interactions in juvenile DM as compared to cSLE.

    Methods

    We performed imaging mass cytometry analysis on skin biopsy samples from juvenile DM patients (n = 6) and cSLE patients (n = 4). Tissue slides were processed and incubated with metal‐tagged antibodies for CD14, CD15, CD16, CD56, CD68, CD11c, HLA–DR, blood dendritic cell antigen 2, CD20, CD27, CD138, CD4, CD8, E‐cadherin, CD31, pan‐keratin, and type I collagen. Stained tissue was ablated, and raw data were acquired using the Hyperion imaging system. We utilized the Phenograph unsupervised clustering algorithm to determine cell marker expression and permutation test by histoCAT to perform neighborhood analysis.

    Results

    We identified 14 cell populations in juvenile DM and cSLE skin, including CD14+ and CD68+ macrophages, myeloid and plasmacytoid dendritic cells (pDCs), CD4+ and CD8+ T cells, and B cells. Overall, cSLE skin had a higher inflammatory cell infiltrate, with increased CD14+ macrophages, pDCs, and CD8+ T cells and immune cell–immune cell interactions. Juvenile DM skin displayed a stronger innate immune signature, with a higher overall percentage of CD14+ macrophages and prominent endothelial cell–immune cell interaction.

    Conclusion

    Our findings identify immune cell population differences, including CD14+ macrophages, pDCs, and CD8+ T cells, in juvenile DM skin compared to cSLE skin, and highlight a predominant innate immune signature and endothelial cell–immune cell interaction in juvenile DM, providing insight into candidate cell populations and interactions to better understand disease‐specific pathophysiology.

     
    more » « less
  3. Abstract Background

    Crohn’s disease is a lifelong disease characterized by chronic inflammation of the gastrointestinal tract. Defining the cellular and transcriptional composition of the mucosa at different stages of disease progression is needed for personalized therapy in Crohn’s.

    Methods

    Ileal biopsies were obtained from (1) control subjects (n = 6), (2) treatment-naïve patients (n = 7), and (3) established (n = 14) Crohn’s patients along with remission (n = 3) and refractory (n = 11) treatment groups. The biopsies processed using 10x Genomics single cell 5' yielded 139 906 cells. Gene expression count matrices of all samples were analyzed by reciprocal principal component integration, followed by clustering analysis. Manual annotations of the clusters were performed using canonical gene markers. Cell type proportions, differential expression analysis, and gene ontology enrichment were carried out for each cell type.

    Results

    We identified 3 cellular compartments with 9 epithelial, 1 stromal, and 5 immune cell subtypes. We observed differences in the cellular composition between control, treatment-naïve, and established groups, with the significant changes in the epithelial subtypes of the treatment-naïve patients, including microfold, tuft, goblet, enterocyte,s and BEST4+ cells. Surprisingly, fewer changes in the composition of the immune compartment were observed; however, gene expression in the epithelial and immune compartment was different between Crohn’s phenotypes, indicating changes in cellular activity.

    Conclusions

    Our study identified cellular and transcriptional signatures associated with treatment-naïve Crohn’s disease that collectively point to dysfunction of the intestinal barrier with an increase in inflammatory cellular activity. Our analysis also highlights the heterogeneity among patients within the same disease phenotype, shining a new light on personalized treatment responses and strategies.

     
    more » « less
  4. Abstract Background

    Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson’s disease (PD). These mutations elevate the LRRK2 kinase activity, making LRRK2 kinase inhibitors an attractive therapeutic. LRRK2 kinase activity has been consistently linked to specific cell signaling pathways, mostly related to organelle trafficking and homeostasis, but its relationship to PD pathogenesis has been more difficult to define.LRRK2-PD patients consistently present with loss of dopaminergic neurons in the substantia nigra but show variable development of Lewy body or tau tangle pathology. Animal models carryingLRRK2mutations do not develop robust PD-related phenotypes spontaneously, hampering the assessment of the efficacy of LRRK2 inhibitors against disease processes. We hypothesized that mutations inLRRK2may not be directly related to a single disease pathway, but instead may elevate the susceptibility to multiple disease processes, depending on the disease trigger. To test this hypothesis, we have previously evaluated progression of α-synuclein and tau pathologies following injection of proteopathic seeds. We demonstrated that transgenic mice overexpressing mutant LRRK2 show alterations in the brain-wide progression of pathology, especially at older ages.

    Methods

    Here, we assess tau pathology progression in relation to long-term LRRK2 kinase inhibition. Wild-type or LRRK2G2019Sknock-in mice were injected with tau fibrils and treated with control diet or diet containing LRRK2 kinase inhibitor MLi-2 targeting the IC50 or IC90 of LRRK2 for 3–6 months. Mice were evaluated for tau pathology by brain-wide quantitative pathology in 844 brain regions and subsequent linear diffusion modeling of progression.

    Results

    Consistent with our previous work, we found systemic alterations in the progression of tau pathology in LRRK2G2019Smice, which were most pronounced at 6 months. Importantly, LRRK2 kinase inhibition reversed these effects in LRRK2G2019Smice, but had minimal effect in wild-type mice, suggesting that LRRK2 kinase inhibition is likely to reverse specific disease processes in G2019S mutation carriers. Additional work may be necessary to determine the potential effect in non-carriers.

    Conclusions

    This work supports a protective role of LRRK2 kinase inhibition in G2019S carriers and provides a rational workflow for systematic evaluation of brain-wide phenotypes in therapeutic development.

     
    more » « less
  5. ABSTRACT BACKGROUND AND PURPOSE

    Numerous sex‐specific differences in multiple sclerosis (MS) susceptibility, disease manifestation, disability progression, inflammation, and neurodegeneration have been previously reported. Previous magnetic resonance imaging (MRI) studies have shown structural differences between female and male MS brain volumes. To determine sex‐specific global and tissue‐specific brain volume throughout the MS life span in a real‐world large MRI database.

    METHODS

    A total of 2,199 MS patients (female/male ratio of 1,651/548) underwent structural MRI imaging on either a 1.5‐T or 3‐T scanner. Global and tissue‐specific volumes of whole brain (WBV), white matter, and gray matter (GMV) were determined by utilizing Structural Image Evaluation using Normalisation of Atrophy Cross‐sectional (SIENAX). Lateral ventricular volume (LVV) was determined with the Neurological Software Tool for REliable Atrophy Measurement (NeuroSTREAM). General linear models investigated sex and age interactions, and post hoc comparative sex analyses were performed.

    RESULTS

    Despite being age‐matched with female MS patents, a greater proportion of male MS patients were diagnosed with progressive MS and had lower normalized WBV (P < .001), GMV (P< .001), and greater LVV (P< .001). In addition to significant stand‐alone main effects, an interaction between sex and age had an additional effect on the LVV (F‐statistics = 4.53,P= .033) and GMV (F‐statistics = 4.59,P= .032). The sex and age interaction was retained in both models of LVV (F‐statistics = 3.31,P= .069) and GMV (F‐statistics = 6.1,P= .003) when disease subtype and disease‐modifying treatment (DMT) were also included. Although male MS patients presented with significantly greater LVV and lower GMV during the early and midlife period when compared to their female counterparts (P< .001 for LVV andP< .019 for GMV), these differences were nullified in 60+ years old patients. Similar findings were seen within a subanalysis of MS patients that were not on any DMT at the time of enrollment.

    CONCLUSION

    There are sex‐specific differences in the LVV and GMV over the MS life span.

     
    more » « less