We examine the properties of damped Lyman-α absorbers (DLAs) emerging from a single set of cosmological initial conditions in two state-of-the-art cosmological hydrodynamic simulations: simba and technicolor dawn. The former includes star formation and black hole feedback treatments that yield a good match with low-redshift galaxy properties, while the latter uses multifrequency radiative transfer to model an inhomogeneous ultraviolet background (UVB) self-consistently and is calibrated to match the Thomson scattering optical depth, UVB amplitude, and Ly α forest mean transmission at z > 5. Both simulations are in reasonable agreement with the measured stellar mass and star formation rate functions at z ≥ 3, and both reproduce the observed neutral hydrogen cosmological mass density, $\Omega _{\rm H\, \small{I}}(z)$. However, the DLA abundance and metallicity distribution are sensitive to the galactic outflows’ feedback and the UVB amplitude. Adopting a strong UVB and/or slow outflows underproduces the observed DLA abundance, but yields broad agreement with the observed DLA metallicity distribution. By contrast, faster outflows eject metals to larger distances, yielding more metal-rich DLAs whose observational selection may be more sensitive to dust bias. The DLA metallicity distribution in models adopting an H2-regulated star formation recipe includes a tail extending to [M/H] ≪ −3, lower than anymore »
Reproducing submillimetre galaxy number counts with cosmological hydrodynamic simulations
ABSTRACT Matching the number counts of high-z submillimetre-selected galaxies (SMGs) has been a long-standing problem for galaxy formation models. In this paper, we use 3D dust radiative transfer to model the submm emission from galaxies in the simba cosmological hydrodynamic simulations, and compare predictions to the latest single-dish observational constraints on the abundance of 850 μm-selected sources. We find good agreement with the shape of the integrated 850 μm luminosity function, and the normalization is within 0.25 dex at >3 mJy, unprecedented for a fully cosmological hydrodynamic simulation, along with good agreement in the redshift distribution of bright SMGs. The agreement is driven primarily by simba’s good match to infrared measures of the star formation rate (SFR) function between z = 2 and 4 at high SFRs. Also important is the self-consistent on-the-fly dust model in simba, which predicts, on average, higher dust masses (by up to a factor of 2.5) compared to using a fixed dust-to-metals ratio of 0.3. We construct a light-cone to investigate the effect of far-field blending, and find that 52 per cent of sources are blends of multiple components, which makes a small contribution to the normalization of the bright end of the number counts. We provide new fits to the 850 μm luminosity as more »
- Publication Date:
- NSF-PAR ID:
- 10390151
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 502
- Issue:
- 1
- Page Range or eLocation-ID:
- 772 to 793
- ISSN:
- 0035-8711
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
null (Ed.)ABSTRACT The past decade has seen significant progress in understanding galaxy formation and evolution using large-scale cosmological simulations. While these simulations produce galaxies in overall good agreement with observations, they employ different sub-grid models for galaxies and supermassive black holes (BHs). We investigate the impact of the sub-grid models on the BH mass properties of the Illustris, TNG100, TNG300, Horizon-AGN, EAGLE, and SIMBA simulations, focusing on the MBH − M⋆ relation and the BH mass function. All simulations predict tight MBH − M⋆ relations, and struggle to produce BHs of $M_{\rm BH}\leqslant 10^{7.5}\, \rm M_{\odot }$ in galaxies of $M_{\star }\sim 10^{10.5}\!-\!10^{11.5}\, \rm M_{\odot }$. While the time evolution of the mean MBH − M⋆ relation is mild ($\rm \Delta M_{\rm BH}\leqslant 1\, dex$ for 0 $\leqslant z \leqslant$ 5) for all the simulations, its linearity (shape) and normalization varies from simulation to simulation. The strength of SN feedback has a large impact on the linearity and time evolution for $M_{\star }\leqslant 10^{10.5}\, \rm M_{\odot }$. We find that the low-mass end is a good discriminant of the simulation models, and highlights the need for new observational constraints. At the high-mass end, strong AGN feedback can suppress the time evolutionmore »
-
ABSTRACT In large-scale hydrodynamical cosmological simulations, the fate of massive galaxies is mainly dictated by the modelling of feedback from active galactic nuclei (AGNs). The amount of energy released by AGN feedback is proportional to the mass that has been accreted on to the black holes (BHs), but the exact subgrid modelling of AGN feedback differs in all simulations. While modern simulations reliably produce populations of quiescent massive galaxies at z ≤ 2, it is also crucial to assess the similarities and differences of the responsible AGN populations. Here, we compare the AGN populations of the Illustris, TNG100, TNG300, Horizon-AGN, EAGLE, and SIMBA simulations. The AGN luminosity function (LF) varies significantly between simulations. Although in agreement with current observational constraints at z = 0, at higher redshift the agreement of the LFs deteriorates with most simulations producing too many AGNs of $L_{\rm x, 2\!-\!10 \, keV}\sim 10^{43\!-\!44}\, \rm erg\, s^{-1}$. AGN feedback in some simulations prevents the existence of any bright AGN with $L_{\rm x, 2\!-\!10 \, keV}\geqslant 10^{45}\rm \,erg\, s^{-1}$ (although this is sensitive to AGN variability), and leads to smaller fractions of AGN in massive galaxies than in the observations at z ≤ 2. We find that all themore »
-
ABSTRACT The James Webb Space Telescope (JWST) promises to revolutionize our understanding of the early Universe, and contrasting its upcoming observations with predictions of the Λ cold dark matter model requires detailed theoretical forecasts. Here, we exploit the large dynamic range of the IllustrisTNG simulation suite, TNG50, TNG100, and TNG300, to derive multiband galaxy luminosity functions from z = 2 to z = 10. We put particular emphasis on the exploration of different dust attenuation models to determine galaxy luminosity functions for the rest-frame ultraviolet (UV), and apparent wide NIRCam bands. Our most detailed dust model is based on continuum Monte Carlo radiative transfer calculations employing observationally calibrated dust properties. This calibration results in constraints on the redshift evolution of the dust attenuation normalization and dust-to-metal ratios yielding a stronger redshift evolution of the attenuation normalization compared to most previous theoretical studies. Overall we find good agreement between the rest-frame UV luminosity functions and observational data for all redshifts, also beyond the regimes used for the dust model calibrations. Furthermore, we also recover the observed high-redshift (z = 4–6) UV luminosity versus stellar mass relation, the H α versus star formation rate relation, and the H α luminosity function at z = 2. The bright endmore »
-
The Atacama Large Millimeter Array (ALMA) Large Program to INvestigate [CII] at Early times (ALPINE) targets the [CII] 158 μ m line and the far-infrared continuum in 118 spectroscopically confirmed star-forming galaxies between z = 4.4 and z = 5.9. It represents the first large [CII] statistical sample built in this redshift range. We present details regarding the data processing and the construction of the catalogs. We detected 23 of our targets in the continuum. To derive accurate infrared luminosities and obscured star formation rates (SFRs), we measured the conversion factor from the ALMA 158 μ m rest-frame dust continuum luminosity to the total infrared luminosity ( L IR ) after constraining the dust spectral energy distribution by stacking a photometric sample similar to ALPINE in ancillary single-dish far-infrared data. We found that our continuum detections have a median L IR of 4.4 × 10 11 L ⊙ . We also detected 57 additional continuum sources in our ALMA pointings. They are at a lower redshift than the ALPINE targets, with a mean photometric redshift of 2.5 ± 0.2. We measured the 850 μ m number counts between 0.35 and 3.5 mJy, thus improving the current interferometric constraints in this flux density range. Wemore »