Dynein is the primary minus-end-directed microtubule motor protein. To achieve activation, dynein binds to the dynactin complex and an adaptor to form the "activated dynein complex." The protein Lis1 aids activation by binding to dynein and promoting its association with dynactin and the adaptor. Ndel1 and its paralog Nde1 are dynein- and Lis1-binding proteins that help control dynein localization within the cell. Cell-based assays suggest that Ndel1-Nde1 also work with Lis1 to promote dynein activation, although the underlying mechanism is unclear. Using purified proteins and quantitative binding assays, here we found that the C-terminal region of Ndel1 contributes to dynein binding and negatively regulates binding to Lis1. Using single-molecule imaging and protein biochemistry, we observed that Ndel1 inhibits dynein activation in two distinct ways. First, Ndel1 disfavors the formation of the activated dynein complex. We found that phosphomimetic mutations in the C-terminal domain of Ndel1 increase its ability to inhibit dynein-dynactin-adaptor complex formation. Second, we observed that Ndel1 interacts with dynein and Lis1 simultaneously and sequesters Lis1 away from its dynein-binding site. In doing this, Ndel1 prevents Lis1-mediated dynein activation. Together, our work suggests that in vitro, Ndel1 is a negative regulator of dynein activation, which contrasts with cellular studies where Ndel1 promotes dynein activity. To reconcile our findings with previous work, we posit that Ndel1 functions to scaffold dynein and Lis1 together while keeping dynein in an inhibited state. We speculate that Ndel1 release can be triggered in cellular settings to allow for timed dynein activation.
more »
« less
The KASH5 protein involved in meiotic chromosomal movements is a novel dynein activating adaptor
Dynein harnesses ATP hydrolysis to move cargo on microtubules in multiple biological contexts. Dynein meets a unique challenge in meiosis by moving chromosomes tethered to the nuclear envelope to facilitate homolog pairing essential for gametogenesis. Though processive dynein motility requires binding to an activating adaptor, the identity of the activating adaptor required for dynein to move meiotic chromosomes is unknown. We show that the meiosis-specific nuclear-envelope protein KASH5 is a dynein activating adaptor: KASH5 directly binds dynein using a mechanism conserved among activating adaptors and converts dynein into a processive motor. We map the dynein-binding surface of KASH5, identifying mutations that abrogate dynein binding in vitro and disrupt recruitment of the dynein machinery to the nuclear envelope in cultured cells and mouse spermatocytes in vivo. Our study identifies KASH5 as the first transmembrane dynein activating adaptor and provides molecular insights into how it activates dynein during meiosis.
more »
« less
- Award ID(s):
- 2142670
- PAR ID:
- 10390189
- Date Published:
- Journal Name:
- eLife
- Volume:
- 11
- ISSN:
- 2050-084X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The pairing of homologous chromosomes (homologs) in meiosis is essential for distributing the correct numbers of chromosomes into haploid gametes. In budding yeast, pairing depends on the formation of 150 to 200 Spo11-mediated double-strand breaks (DSBs) that are distributed among 16 homolog pairs, but it is not known if all, or only a subset, of these DSBs contribute to the close juxtaposition of homologs. Having established a system to measure the position of fluorescently tagged chromosomal loci in three-dimensional space over time, we analyzed locus trajectories to determine how frequently and how long loci spend colocalized or apart. Continuous imaging revealed highly heterogeneous cell-to-cell behavior of foci, with the majority of cells exhibiting a “mixed” phenotype where foci move into and out of proximity, even at late stages of prophase, suggesting that the axial structures of the synaptonemal complex may be more dynamic than anticipated. The observed plateaus of the mean-square change in distance (MSCD) between foci informed the development of a biophysical model of two diffusing polymers that captures the loss of centromere linkages as cells enter meiosis, nuclear confinement, and the formation of Spo11-dependent linkages. The predicted number of linkages per chromosome in our theoretical model closely approximates the small number (approximately two to four) of estimated synapsis-initiation sites, suggesting that excess DSBs have negligible effects on the overall juxtaposition of homologs. These insights into the dynamic interchromosomal behavior displayed during homolog pairing demonstrate the power of combining time-resolved in vivo analysis with modeling at the granular level.more » « less
-
The success of an organism is contingent upon its ability to faithfully pass on its genetic material. In the meiosis of many species, the process of chromosome segregation requires that bipolar spindles be formed without the aid of dedicated microtubule organizing centers, such as centrosomes. Here, we describe detailed analyses of acentrosomal spindle assembly and disassembly in time-lapse images, from live meiotic cells of Zea mays. Microtubules organized on the nuclear envelope with a perinuclear ring structure until nuclear envelope breakdown, at which point microtubules began bundling into a bipolar form. However, the process and timing of spindle assembly was highly variable, with frequent assembly errors in both meiosis I and II. Approximately 61% of cells formed incorrect spindle morphologies, with the most prevalent being tripolar spindles. The erroneous spindles were actively rearranged to bipolar through a coalescence of poles before proceeding to anaphase. Spindle disassembly occurred as a two-state process with a slow depolymerization, followed by a quick collapse. The results demonstrate that maize meiosis I and II spindle assembly is remarkably fluid in the early assembly stages, but otherwise proceeds through a predictable series of events.more » « less
-
In meiotic prophase I, homologous chromosome pairing is promoted through chromosome movement mediated by nuclear envelope proteins, microtubules, and dynein. After proper homologue pairing has been established, the synaptonemal complex (SC) assembles along the paired homologues, stabilizing their interaction and allowing for crossing over to occur. Previous studies have shown that perturbing chromosome movement leads to pairing defects and SC polycomplex formation. We show that FKB-6 plays a role in SC assembly and is required for timely pairing and proper double-strand break repair kinetics. FKB-6 localizes outside the nucleus, and in its absence, the microtubule network is altered. FKB-6 is required for proper movement of dynein, increasing resting time between movements. Attenuating chromosomal movement in fkb-6 mutants partially restores the defects in synapsis, in agreement with FKB-6 acting by decreasing chromosomal movement. Therefore, we suggest that FKB-6 plays a role in regulating dynein movement by preventing excess chromosome movement, which is essential for proper SC assembly and homologous chromosome pairing.more » « less
-
This study compares the role of electrostatics in the binding process between microtubules and two dynein microtubule-binding domains (MTBDs): cytoplasmic and axonemal. These two dyneins are distinctively different in terms of their functionalities: cytoplasmic dynein is processive, while axonemal dynein is involved in beating. In both cases, the binding requires frequent association/disassociation between the microtubule and MTBD, and involves highly negatively charged microtubules, including non-structured C-terminal domains (E-hooks), and an MTBD interface that is positively charged. This indicates that electrostatics play an important role in the association process. Here, we show that the cytoplasmic MTBD binds electrostatically tighter to microtubules than to the axonemal MTBD, but the axonemal MTBD experiences interactions with microtubule E-hooks at longer distances compared with the cytoplasmic MTBD. This allows the axonemal MTBD to be weakly bound to the microtubule, while at the same time acting onto the microtubule via the flexible E-hooks, even at MTBD–microtubule distances of 45 Å. In part, this is due to the charge distribution of MTBDs: in the cytoplasmic MTBD, the positive charges are concentrated at the binding interface with the microtubule, while in the axonemal MTBD, they are more distributed over the entire structure, allowing E-hooks to interact at longer distances. The dissimilarities of electrostatics in the cases of axonemal and cytoplasmic MTBDs were found not to result in a difference in conformational dynamics on MTBDs, while causing differences in the conformational states of E-hooks. The E-hooks’ conformations in the presence of the axonemal MTBD were less restricted than in the presence of the cytoplasmic MTBD. In parallel with the differences, the common effect was found that the structural fluctuations of MTBDs decrease as either the number of contacts with E-hooks increases or the distance to the microtubule decreases.more » « less
An official website of the United States government

