skip to main content


Title: Constraining the physical properties of the first lensed z ∼ 9 − 16 galaxy candidates with JWST
ABSTRACT

The first deep-field observations of the JWST have immediately yielded a surprisingly large number of very high redshift candidates, pushing the frontier of observability well beyond z ≳ 10. We here present a detailed SED-fitting analysis of the 10 gravitationally lensed z ∼ 9–16 galaxy candidates detected behind the galaxy cluster SMACS J0723.3−7327 in a previous paper using the BEAGLE tool. Our analysis makes use of dynamical considerations to place limits on the ages of these galaxies and of all three published SL models of the cluster to account for lensing systematics. We find the majority of these galaxies to have relatively low stellar masses $M_{\star }\sim 10^7-10^8\, \mathrm{M}_{\odot }$ and young ages tage ∼ 10–100 Myr but with a few higher mass exceptions ($M_{\star }\sim 10^9\rm{-}10^{10}\, \mathrm{M}_{\odot }$) due to Balmer-break detections at z ∼ 9–10. Because of their very blue UV-slopes, down to β ∼ −3, all of the galaxies in our sample have extremely low dust attenuations AV ≲ 0.02. Placing the measured parameters into relation, we find a very shallow M⋆ − MUV-slope and high sSFRs above the main sequence of star formation with no significant redshift-evolution in either relation. This is in agreement with the bright UV luminosities measured for these objects and indicates that we are naturally selecting UV-bright galaxies that are undergoing intense star formation at the time they are observed. Finally, we discuss the robustness of our high-redshift galaxy sample regarding low-redshift interlopers and conclude that low-redshift solutions can safely be ruled out for roughly half of the sample, including the highest redshift galaxies at z ∼ 12–16. These objects represent compelling targets for spectroscopic follow-up observations with JWST and ALMA.

 
more » « less
NSF-PAR ID:
10390211
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
519
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 3064-3075
Size(s):
["p. 3064-3075"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present the results of a search for high-redshift (z > 9) galaxy candidates in the JWST UNCOVER survey, using deep NIRCam and NIRISS imaging in seven bands over ∼45 arcmin2 and ancillary Hubble Space Telescope (HST) observations. The NIRCam observations reach a 5σ limiting magnitude of ∼29.2 AB. The identification of high-z candidates relies on a combination of a dropout selection and photometric redshifts. We find 16 candidates at 9 < z < 12 and three candidates at 12 < z < 13, eight candidates are deemed very robust. Their lensing amplification ranges from μ = 1.2 to 11.5. Candidates have a wide range of (lensing corrected) luminosities and young ages, with low stellar masses [6.8 < log(M⋆/M⊙) < 9.5] and low star formation rates (SFR = 0.2–7 M⊙ yr−1), confirming previous findings in early JWST observations of z > 9. A few galaxies at z ∼ 9−10 appear to show a clear Balmer break between the F356W and F444W/F410M bands, which helps constrain their stellar mass. We estimate blue UV continuum slopes between β = −1.8 and −2.3, typical for early galaxies at z > 9 but not as extreme as the bluest recently discovered sources. We also find evidence for a rapid redshift-evolution of the mass-luminosity relation and a redshift evolution of the UV continuum slope for a given range of intrinsic magnitude, in line with theoretical predictions. These findings suggest that deeper JWST observations are needed to reach the fainter galaxy population at those early epochs, and follow-up spectroscopy will help better constrain the physical properties and star formation histories of a larger sample of galaxies.

     
    more » « less
  2. ABSTRACT

    Both observations and simulations have shown strong evidence for highly time-variable star formation in low-mass and/or high-redshift galaxies, which has important observational implications because high-redshift galaxy samples are rest-ultraviolet (rest-UV) selected and therefore particularly sensitive to the recent star formation. Using a suite of cosmological ‘zoom-in’ simulations at z > 5 from the Feedback in Realistic Environments project, we examine the implications of bursty star formation histories for observations of high-redshift galaxies with JWST. We characterize how the galaxy observability depends on the star formation history. We also investigate selection effects due to bursty star formation on the physical properties measured, such as the gas fraction, specific star formation rate, and metallicity. We find the observability to be highly time-dependent for galaxies near the survey’s limiting flux due to the star formation rate variability: as the star formation rate fluctuates, the same galaxy oscillates in and out of the observable sample. The observable fraction $f_\mathrm{obs} = 50~{{\ \rm per\ cent}}$ at z ∼ 7 and M⋆ ∼ 108.5–$10^{9}\, {\rm M}_{\odot }$ for a JWST/NIRCam survey reaching a limiting magnitude of $m^\mathrm{lim}_\mathrm{AB} \sim 29{\!-\!}30$, representative of surveys such as JADES and CEERS. JWST-detectable galaxies near the survey limit tend to have properties characteristic of galaxies in the bursty phase: on average, they show approximately 2.5 times higher cold, dense gas fractions and 20 times higher specific star formation rates at a given stellar mass than galaxies below the rest-UV detection threshold. Our study represents a first step in quantifying selection effects and the associated biases due to bursty star formation in studying high-redshift galaxy properties.

     
    more » « less
  3. ABSTRACT

    The power-law slope of the rest-ultraviolet (UV) continuum (fλ ∝ λβ) is a key metric of early star-forming galaxies, providing one of our only windows into the stellar populations and physical conditions of z ≳ 10 galaxies. Expanding upon previous studies with limited sample sizes, we leverage deep imaging from the JWST Advanced Deep Extragalactic Survey (JADES) to investigate the UV slopes of 179 z ≳ 9 galaxies with apparent magnitudes of mF200W ≃ 26–31, which display a median UV slope of β = −2.4. We compare to a statistical sample of z ≃ 5–9 galaxies, finding a shift towards bluer rest-UV colours at all $M_{\rm UV}$. The most UV-luminous z ≳ 9 galaxies are significantly bluer than their lower redshift counterparts, representing a dearth of moderately red galaxies within the first 500 Myr. At yet earlier times, the z ≳ 11 galaxy population exhibits very blue UV slopes, implying very low impact from dust attenuation. We identify a robust sample of 44 galaxies with β ≲ −2.8, which have spectral energy distributions requiring models of density-bounded H ii regions and median ionizing photon escape fractions of 0.51 to reproduce. Their rest-optical colours imply that this sample has weaker emission lines (median mF356W − mF444W = 0.19 mag) than typical galaxies (median mF356W − mF444W = 0.39 mag), consistent with the inferred escape fractions. This sample consists of relatively low stellar masses (median $\log (M/{\rm M}_{\odot })=7.5\pm 0.2$), and specific star formation rates (sSFRs; median $=79 \, \rm Gyr^{-1}$) nearly twice that of our full galaxy sample (median sSFRs $=44 \, \rm Gyr^{-1}$), suggesting these objects are more common among systems experiencing a recent upturn in star formation. We demonstrate that the shutoff of star formation provides an alternative solution for modelling of extremely blue UV colours, making distinct predictions for the rest-optical emission of these galaxies. Future spectroscopy will be required to distinguish between these physical pictures.

     
    more » « less
  4. ABSTRACT

    We perform cosmological hydrodynamical simulations to study the formation of proto-globular cluster candidates in progenitors of present-day dwarf galaxies $(M_{\rm vir} \approx 10^{10}\, {\rm M}_\odot$ at z = 0) as part of the ‘Feedback in Realistic Environment’ (FIRE) project. Compact (r1/2 < 30 pc), relatively massive (0.5 × 105 ≲ M⋆/M⊙ ≲ 5 × 105), self-bound stellar clusters form at 11 ≳ z ≳ 5 in progenitors with $M_{\rm vir} \approx 10^9\, \mathrm{M}_{\odot }$. Cluster formation is triggered when at least $10^7\, \mathrm{M}_{\odot }$ of dense, turbulent gas reaches $\Sigma _{\rm gas} \approx 10^4\, {\rm M}_\odot \, {\rm pc}^{-2}$ as a result of the compressive effects of supernova feedback or from cloud–cloud collisions. The clusters can survive for $2-3\, {\rm Gyr}$; absent numerical effects, they could possibly survive substantially longer, perhaps to z = 0. The longest lived clusters are those that form at significant distance – several hundreds of pc – from their host galaxy. We therefore predict that globular clusters forming in progenitors of present-day dwarf galaxies will be offset from any pre-existing stars within their host dark matter haloes as opposed to deeply embedded within a well-defined galaxy. Properties of the nascent clusters are consistent with observations of some of the faintest and most compact high-redshift sources in Hubble Space Telescope lensing fields and are at the edge of what will be detectable as point sources in deep imaging of non-lensed fields with JWST. By contrast, the star clusters’ host galaxies will remain undetectable.

     
    more » « less
  5. ABSTRACT

    We present band 6 ALMA observations of a heavily obscured radio-loud (L1.4 GHz = 1025.4 W Hz−1) active galactic nucleus (AGN) candidate at zphot = 6.83 ± 0.06 found in the 1.5 deg2 COSMOS field. The ALMA data reveal detections of exceptionally strong [C ii]158 $\mu$m (z[C ii] = 6.8532) and underlying dust continuum emission from this object (COS-87259), where the [C ii] line luminosity, line width, and 158 $\mu$m continuum luminosity are comparable to those seen from z ∼ 7 sub-mm galaxies and quasar hosts. The 158 $\mu$m continuum detection suggests a total infrared luminosity of $9\times 10^{12}\, \mathrm{ L}_\odot$ with corresponding very large obscured star formation rate (1300 M⊙ yr−1) and dust mass ($2\times 10^9\, \mathrm{ M}_\odot$). The strong break seen between the VIRCam and IRAC photometry perhaps suggests that COS-87259 is an extremely massive reionization-era galaxy with $M_\ast \approx 1.7\times 10^{11}\, \mathrm{ M}_\odot$. Moreover, the MIPS, PACS, and SPIRE detections imply that this object harbours an AGN that is heavily obscured ($\tau _{_{\mathrm{9.7\,\mu m}}}=2.3$) with a bolometric luminosity of approximately $5\times 10^{13}\, \mathrm{ L}_\odot$. Such a very high AGN luminosity suggests that this object is powered by an ≈1.6 × 10$^9\, \mathrm{ M}_\odot$ black hole if accreting near the Eddington limit, and is effectively a highly obscured version of an extremely ultraviolet (UV)-luminous (M1450 ≈ −27.3) z ∼ 7 quasar. Notably, these z ∼ 7 quasars are an exceedingly rare population (∼0.001 deg−2), while COS-87259 was identified over a relatively small field. Future very wide area surveys with e.g. Roman and Euclid have the potential to identify many more extremely red yet UV-bright z ≳ 7 objects similar to COS-87259, providing richer insight into the occurrence of intense obscured star formation and supermassive black hole growth among this population.

     
    more » « less