skip to main content

Title: Constraining the physical properties of the first lensed z ∼ 9 − 16 galaxy candidates with JWST

The first deep-field observations of the JWST have immediately yielded a surprisingly large number of very high redshift candidates, pushing the frontier of observability well beyond z ≳ 10. We here present a detailed SED-fitting analysis of the 10 gravitationally lensed z ∼ 9–16 galaxy candidates detected behind the galaxy cluster SMACS J0723.3−7327 in a previous paper using the BEAGLE tool. Our analysis makes use of dynamical considerations to place limits on the ages of these galaxies and of all three published SL models of the cluster to account for lensing systematics. We find the majority of these galaxies to have relatively low stellar masses $M_{\star }\sim 10^7-10^8\, \mathrm{M}_{\odot }$ and young ages tage ∼ 10–100 Myr but with a few higher mass exceptions ($M_{\star }\sim 10^9\rm{-}10^{10}\, \mathrm{M}_{\odot }$) due to Balmer-break detections at z ∼ 9–10. Because of their very blue UV-slopes, down to β ∼ −3, all of the galaxies in our sample have extremely low dust attenuations AV ≲ 0.02. Placing the measured parameters into relation, we find a very shallow M⋆ − MUV-slope and high sSFRs above the main sequence of star formation with no significant redshift-evolution in either relation. This is in agreement with the bright more » UV luminosities measured for these objects and indicates that we are naturally selecting UV-bright galaxies that are undergoing intense star formation at the time they are observed. Finally, we discuss the robustness of our high-redshift galaxy sample regarding low-redshift interlopers and conclude that low-redshift solutions can safely be ruled out for roughly half of the sample, including the highest redshift galaxies at z ∼ 12–16. These objects represent compelling targets for spectroscopic follow-up observations with JWST and ALMA.

« less
; ; ; ; ; ;
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 3064-3075
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this

    We present band 6 ALMA observations of a heavily obscured radio-loud (L1.4 GHz = 1025.4 W Hz−1) active galactic nucleus (AGN) candidate at zphot = 6.83 ± 0.06 found in the 1.5 deg2 COSMOS field. The ALMA data reveal detections of exceptionally strong [C ii]158 $\mu$m (z[C ii] = 6.8532) and underlying dust continuum emission from this object (COS-87259), where the [C ii] line luminosity, line width, and 158 $\mu$m continuum luminosity are comparable to those seen from z ∼ 7 sub-mm galaxies and quasar hosts. The 158 $\mu$m continuum detection suggests a total infrared luminosity of $9\times 10^{12}\, \mathrm{ L}_\odot$ with corresponding very large obscured star formation rate (1300 M⊙ yr−1) and dust mass ($2\times 10^9\, \mathrm{ M}_\odot$). The strong break seen between the VIRCam and IRAC photometry perhaps suggests that COS-87259 is an extremely massive reionization-era galaxy with $M_\ast \approx 1.7\times 10^{11}\, \mathrm{ M}_\odot$. Moreover, the MIPS, PACS, and SPIRE detections imply that this object harbours an AGN that is heavily obscured ($\tau _{_{\mathrm{9.7\,\mu m}}}=2.3$) with a bolometric luminosity of approximately $5\times 10^{13}\, \mathrm{ L}_\odot$. Such a very high AGN luminosity suggests that this object is powered by an ≈1.6 × 10$^9\, \mathrm{ M}_\odot$ black hole if accreting near the Eddington limit, and is effectively a highly obscured version of an extremely ultravioletmore »(UV)-luminous (M1450 ≈ −27.3) z ∼ 7 quasar. Notably, these z ∼ 7 quasars are an exceedingly rare population (∼0.001 deg−2), while COS-87259 was identified over a relatively small field. Future very wide area surveys with e.g. Roman and Euclid have the potential to identify many more extremely red yet UV-bright z ≳ 7 objects similar to COS-87259, providing richer insight into the occurrence of intense obscured star formation and supermassive black hole growth among this population.

    « less
  2. null (Ed.)
    ABSTRACT The relation between infrared excess (IRX) and UV spectral slope (βUV) is an empirical probe of dust properties of galaxies. The shape, scatter, and redshift evolution of this relation are not well understood, however, leading to uncertainties in estimating the dust content and star formation rates (SFRs) of galaxies at high redshift. In this study, we explore the nature and properties of the IRX–βUV relation with a sample of z = 2–6 galaxies ($M_*\approx 10^9\!-\!10^{12}\, \mathrm{M}_\odot$) extracted from high-resolution cosmological simulations (MassiveFIRE) of the Feedback in Realistic Environments (FIRE) project. The galaxies in our sample show an IRX–βUV relation that is in good agreement with the observed relation in nearby galaxies. IRX is tightly coupled to the UV optical depth, and is mainly determined by the dust-to-star geometry instead of total dust mass, while βUV is set both by stellar properties, UV optical depth, and the dust extinction law. Overall, much of the scatter in the IRX–βUV relation of our sample is found to be driven by variations of the intrinsic UV spectral slope. We further assess how the IRX–βUV relation depends on viewing direction, dust-to-metal ratio, birth-cloud structures, and the dust extinction law and we present a simplemore »model that encapsulates most of the found dependencies. Consequently, we argue that the reported ‘deficit’ of the infrared/sub-millimetre bright objects at z ≳ 5 does not necessarily imply a non-standard dust extinction law at those epochs.« less

    With JWST, new opportunities to study the evolution of galaxies in the early Universe are emerging. Spitzer constraints on rest-optical properties of z ≳ 7 galaxies demonstrated the power of using galaxy stellar masses and star formation histories (SFHs) to indirectly infer the cosmic star formation history. However, only the brightest individual z ≳ 8 objects could be detected with Spitzer, making it difficult to robustly constrain activity at z ≳ 10. Here, we leverage the greatly improved rest-optical sensitivity of JWST at z ≳ 8 to constrain the ages of seven UV-bright ($M_{\rm uv}\lesssim -19.5$) galaxies selected to lie at z ∼ 8.5–11, then investigate implications for z ≳ 15 star formation. We infer the properties of individual objects with two spectral energy distribution modelling codes, then infer a distribution of ages for bright z ∼ 8.5–11 galaxies. We find a median age of ∼20 Myr, younger than that inferred at z ∼ 7 with a similar analysis, consistent with an evolution towards larger specific star formation rates at early times. The age distribution suggests that only ∼3 per cent of bright z ∼ 8.5–11 galaxies would be similarly luminous at z ≳ 15, implying that the number density of brightmore »galaxies declines by at least an order of magnitude between z ∼ 8.5–11 and $z \sim 15$. This evolution is challenging to reconcile with some early JWST results suggesting the abundance of bright galaxies does not significantly decrease towards very early times, but we suggest this tension may be eased if young stellar populations form on top of older stellar components, or if bright z ∼ 15 galaxies are observed during a burst of star formation.

    « less
  4. ABSTRACT We analyse the rest-optical emission-line ratios of z ∼ 1.5 galaxies drawn from the Multi-Object Spectrometer for Infra-Red Exploration Deep Evolution Field (MOSDEF) survey. Using composite spectra, we investigate the mass–metallicity relation (MZR) at z ∼ 1.5 and measure its evolution to z = 0. When using gas-phase metallicities based on the N2 line ratio, we find that the MZR evolution from z ∼ 1.5 to z = 0 depends on stellar mass, evolving by $\Delta \rm log(\rm O/H) \sim 0.25$ dex at M*< $10^{9.75}\, \mathrm{M}_{\odot }$ down to $\Delta \rm log(\rm O/H) \sim 0.05$ at M* ≳ $10^{10.5}\, \mathrm{M}_{\odot }$. In contrast, the O3N2-based MZR shows a constant offset of $\Delta \rm log(\rm O/H) \sim 0.30$ across all masses, consistent with previous MOSDEF results based on independent metallicity indicators, and suggesting that O3N2 provides a more robust metallicity calibration for our z ∼ 1.5 sample. We investigated the secondary dependence of the MZR on star formation rate (SFR) by measuring correlated scatter about the mean M*-specific SFR and M*−$\log (\rm O3N2)$ relations. We find an anticorrelation between $\log (\rm O/H)$ and sSFR offsets, indicating the presence of a M*−SFR−Z relation, though with limited significance. Additionally, we find that our z ∼ 1.5more »stacks lie along the z = 0 metallicity sequence at fixed μ = log (M*/M⊙) − 0.6 × $\log (\rm SFR / M_{\odot } \, yr^{-1})$ suggesting that the z ∼ 1.5 stacks can be described by the z = 0 fundamental metallicity relation (FMR). However, using different calibrations can shift the calculated metallicities off of the local FMR, indicating that appropriate calibrations are essential for understanding metallicity evolution with redshift. Finally, understanding how [N ii]/H α scales with galaxy properties is crucial to accurately describe the effects of blended [N ii] and H α on redshift and H α fiux measurements in future large surveys utilizing low-resolution spectra such as with Euclid and the Roman Space Telescope.« less

    We report the identification of radio (0.144–3 GHz) and mid-, far-infrared, and sub-mm (24–850μm) emission at the position of one of 41 UV-bright ($\mathrm{M_{\mathrm{UV}}}^{ }\lesssim -21.25$) z ≃ 6.6–6.9 Lyman-break galaxy candidates in the 1.5 deg2 COSMOS field. This source, COS-87259, exhibits a sharp flux discontinuity (factor >3) between two narrow/intermediate bands at 9450 and 9700 Å and is undetected in all nine bands blueward of 9600 Å, as expected from a Lyman alpha break at z ≃ 6.8. The full multiwavelength (X-ray through radio) data of COS-87529 can be self-consistently explained by a very massive (M* = 1010.8 M⊙) and extremely red (rest-UV slope β = −0.59) z ≃ 6.8 galaxy with hyperluminous infrared emission (LIR = 1013.6 L⊙) powered by both an intense burst of highly obscured star formation (SFR ≈ 1800 M⊙ yr−1) and an obscured ($\tau _{_{\mathrm{9.7\mu m}}} = 7.7\pm 2.5$) radio-loud (L1.4 GHz ≈ 1025.4 W Hz−1) active galactic nucleus (AGN). The radio emission is compact (1.04 ± 0.12 arcsec) and exhibits an ultra-steep spectrum between 1.32 and 3 GHz ($\alpha =-1.57^{+0.22}_{-0.21}$) that flattens at lower frequencies ($\alpha = -0.86^{+0.22}_{-0.16}$ between 0.144 and 1.32 GHz), consistent with known z > 4 radio galaxies. We also demonstrate that COS-87259 may reside in a significant (11×) galaxymore »overdensity, as common for systems hosting radio-loud AGN. While we find that low-redshift solutions to the optical + near-infrared data are not preferred, a spectroscopic redshift will ultimately be required to establish the true nature of COS-87259 beyond any doubt. If confirmed to lie at z ≃ 6.8, the properties of COS-87259 would be consistent with a picture wherein AGN and highly obscured star formation activity are fairly common among very massive (M* > 1010 M⊙) reionization-era galaxies.

    « less