skip to main content


Title: On the variation of bi‐periodic waves in the transverse direction
Abstract

Weakly nonlinear, bi‐periodic patterns of waves that propagate in the‐direction with amplitude variation in the‐direction are generated in a laboratory. The amplitude variation in the‐direction is studied within the framework of the vector (vNLSE) and scalar (sNLSE) nonlinear Schrödinger equations using the uniform‐amplitude, Stokes‐like solution of the vNLSE and the Jacobi elliptic sine function solution of the sNLSE. The wavetrains are generated using the Stokes‐like solution of vNLSE; however, a comparison of both predictions shows that while they both do a reasonably good job of predicting the observed amplitude variation in, the comparison with the elliptic function solution of the sNLSE has significantly less error when the ratio of‐wavenumber to the two‐dimensional wavenumber is less than about 0.25. For ratios between about 0.25 and 0.30 (the limit of the experiments), the two models have comparable errors. When the ratio is less than about 0.17, agreement with the vNLSE solution requires a third‐harmonic term in the‐direction, obtained from a Stokes‐type expansion of interacting, symmetric wavetrains. There is no evidence of instability growth in the‐direction, consistent with the work of Segur and colleagues, who showed that dissipation stabilizes the modulational instability. Finally, there is some extra amplitude variation in, which is examined via a qualitative stability calculation that allows symmetry breaking in that direction.

 
more » « less
Award ID(s):
1716159
NSF-PAR ID:
10390241
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Studies in Applied Mathematics
Volume:
147
Issue:
4
ISSN:
0022-2526
Page Range / eLocation ID:
p. 1388-1408
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We consider the mapping properties of the integral operator arising in nonlocal slender body theory (SBT) for the model geometry of a straight, periodic filament. It is well known that the classical singular SBT integral operator suffers from high wavenumber instabilities, making it unsuitable for approximating theslender body inverse problem, where the fiber velocity is prescribed and the integral operator must be inverted to find the force density along the fiber. Regularizations of the integral operator must therefore be used instead. Here, we consider two regularization methods: spectral truncation and the‐regularization of Tornberg and Shelley (2004). We compare the mapping properties of these approximations to the underlying partial differential equation (PDE) solution, which for the inverse problem is simply the Stokes Dirichlet problem with data constrained to be constant on cross sections. For the straight‐but‐periodic fiber with constant radius, we explicitly calculate the spectrum of the operator mapping fiber velocity to force for both the PDE and the approximations. We prove that the spectrum of the original SBT operator agrees closely with the PDE operator at low wavenumbers but differs at high frequencies, allowing us to define a truncated approximation with a wavenumber cutoff. For both the truncated and‐regularized approximations, we obtain rigorous‐based convergence to the PDE solution as: A fiber velocity withregularity givesconvergence, while a fiber velocity with at leastregularity yieldsconvergence. Moreover, we determine the dependence of the‐regularized error estimate on the regularization parameter.

     
    more » « less
  2. Abstract

    Estimates of turbulence kinetic energy (TKE) dissipation rate (ε) are key in understanding how heat, gas, and other climate‐relevant properties are transferred across the air‐sea interface and mixed within the ocean. A relatively new method involving moored pulse‐coherent acoustic Doppler current profilers (ADCPs) allows for estimates ofεwith concurrent surface flux and wave measurements across an extensive length of time and range of conditions. Here, we present 9 months of moored estimates ofεat a fixed depth of 8.4 m at the Stratus mooring site (20°S, 85°W). We find that turbulence regimes are quantified similarly using the Obukhov length scaleand the newer Langmuir stability length scale, suggesting that ocean‐side friction velocityimplicitly captures the influence of Langmuir turbulence at this site. This is illustrated by a strong correlation between surface Stokes driftandthat is likely facilitated by the steady Southeast trade winds regime. In certain regimes,, whereis the von Kármán constant andis instrument depth, and surface buoyancy flux capture our estimates ofwell, collapsing data points near unity. We find that a newer Langmuir turbulence scaling, based onand, scalesεwell at times but is overall less consistent than. Monin‐Obukhov similarity theory (MOST) relationships from prior studies in a variety of aquatic and atmospheric settings largely agree with our data in conditions where convection and wind‐driven current shear are both significant sources of TKE, but diverge in other regimes.

     
    more » « less
  3. Abstract

    The air‐sea exchange of oxygen (O2) is driven by changes in solubility, biological activity, and circulation. The total air‐sea exchange of O2has been shown to be closely related to the air‐sea exchange of heat on seasonal timescales, with the ratio of the seasonal flux of O2to heat varying with latitude, being higher in the extratropics and lower in the subtropics. This O2/heat ratio is both a fundamental biogeochemical property of air‐sea exchange and a convenient metric for testing earth system models. Current estimates of the O2/heat flux ratio rely on sparse observations of dissolved O2, leaving it fairly unconstrained. From a model ensemble we show that the ratio of the seasonal amplitude of two atmospheric tracers, atmospheric potential oxygen (APO) and the argon‐to‐nitrogen ratio (Ar/O2), exhibits a close relationship to the O2/heat ratio of the extratropics (40–). The amplitude ratio,/, is relatively constant within the extratropics of each hemisphere due to the zonal mixing of the atmosphere./is not sensitive to atmospheric transport, as most of the observed spatial variability in the seasonal amplitude ofAPO is compensated by similar variations in(Ar/). From the relationship between/heat and/in the model ensemble, we determine that the atmospheric observations suggest hemispherically distinct/heat flux ratios of 3.30.3 and 4.70.8 nmolbetween 40 andin the Northern and Southern Hemispheres respectively, providing a useful constraint forand heat air‐sea fluxes in earth system models and observation‐based data products.

     
    more » « less
  4. Abstract

    The Whitham equation was proposed as a model for surface water waves that combines the quadratic flux nonlinearityof the Korteweg–de Vries equation and the full linear dispersion relationof unidirectional gravity water waves in suitably scaled variables. This paper proposes and analyzes a generalization of Whitham's model to unidirectional nonlinear wave equations consisting of a general nonlinear flux functionand a general linear dispersion relation. Assuming the existence of periodic traveling wave solutions to this generalized Whitham equation, their slow modulations are studied in the context of Whitham modulation theory. A multiple scales calculation yields the modulation equations, a system of three conservation laws that describe the slow evolution of the periodic traveling wave's wavenumber, amplitude, and mean. In the weakly nonlinear limit, explicit, simple criteria in terms of generalandestablishing the strict hyperbolicity and genuine nonlinearity of the modulation equations are determined. This result is interpreted as a generalized Lighthill–Whitham criterion for modulational instability.

     
    more » « less
  5. Abstract

    We present the average distribution of energetic electrons in Jupiter's plasma sheet and outer radiation belt near the magnetic equator during Juno's first 29 orbits. Juno observed a clear decrease of magnetic field amplitude and enhancement of energetic electron fluxes over 0.1–1,000 keV energies when traveling through the plasma sheet. In the radiation belts, Juno observed pancake‐shaped electron distributions with high fluxes at ∼90° pitch angle and whistler‐mode waves. Our survey indicates that the statistical electron flux at each energy tends to increase fromto. The equatorial pitch angle distributions are isotropic or field‐aligned in the plasma sheet and gradually become pancake‐shaped at. The electron phase space density gradients atMeV/G are relatively small atand become positive over, suggesting the dominant role of adiabatic radial transport at highershells, and the possible loss processes at lowershells.

     
    more » « less